Core Notes
Relational Database Systems
Assessment 2 Guidance

Designing the Database

Task 1 - Entity Relation Model

In the creation of the entity model you must decide whether EFFECT is an attribute of HAZARD or is in fact a valid entity. Either choice is deemed a valid solution.

Task 2 - Normalisation

· Appendix S1

The detail provided here is of volcanoes and recorded activities. Each activity occurrence has variable number of associated hazards, such as lahars, landslides etc. The location of each volcano is defined as either by region or country and it may be worthwhile including both as attributes of VOLCANO.

· Appendix S2

This exercise extends the range of hazards by including tsunami and post eruption starvation. A difficulty here is how to record whether the number of people killed is approximate (~) or in excess of (>).

· Appendix S3

This exercise brings eruption and activity together as a single relation which may be a sensible approach.

· Appendix S4

In tackling this exercise a preliminary step is to reorganise the presentation of the data before commencing Normalisation, as the following extract shows:

	Volcano Type
	Characteristics
	Volcano
	Diagram

	Flood or Basalt Plateau
	Very liquid etc …
	Columbia River Plateau
	{picture 1}

	Shield
	Liquid lava etc …
	Larch Mountain
	{picture 2}

	Shield
	Liquid lava etc …
	Mount Sylvania
	{picture 2}

	Shield
	Liquid lava etc …
	Highland Butte
	{picture 2}

	Shield
	Liquid lava etc …
	Individual Hawaiian

volcanoes
	{picture 2}

	Cinder Cone
	Explosive liquid lava etc
	Mount Tabor
	{picture 3}

	Cinder Cone
	Explosive liquid lava etc
	Mount Zion
	{picture 3}

	Cinder Cone
	Explosive liquid lava etc
	Chamberlain Hill
	{picture 3}

· Appendix S5

In this exercise no new data is added to the model. The three data items are country, region and volcano. There may be a temptation to view region as a dependent key of country but this is not the case as if you know the country, you cannot directly derive the region. Neither region nor country have dependent attributes e.g. population, therefore no change from 2NF to 3NF.

Database Integrity

There should be a mechanism by which we can limit invalid data entering the database, and thus maintain the database’s integrity. This avoids the spectre of RIRO, rubbish-in-rubbish-out, that haunted early database designers..

Validation checks are one such mechanism that can be invoked into the table design. The purpose of such checks is not to verify the correctness of the field values being entered, but to act as a filter of varying granularity in order to reject wrong data entries. Such simple, black-and-white checks can reduce data input error by over 99%.

[image: image2.png]B Microsoft Access

b 5 o s T T

DSE|&E V][e o %X B 6,

i Veterinary : Database

=2 Relationships

Resdy

Animal

animal 1D

Edit Relationships

TablejQuery: Related TablefQuery:

o Towen

[animal 1D Tanimal D

Join Type.

T Enforce Referential Integrity

I~ Cascade Update Related Fields

I~ Coscade Delete Related Records

Create few.

Relationship Type: | Indeterminate.

Cancel

Drug-Issue

[RDBSPartz -Microsaft viard]

Input Validation Checks

[image: image3.png][Ele £t tiow st Toos ndon Hob

|E-lRERY[smas|o]s #=2@NBa- |0,

Fied Name Dota Type Description
il 1D Tmber

arimal name Text

date of bith Toxt

arimal type. Toxt

arimal breed Toxt

onner-id Text

Field Properties

Genert | ookp |

Fet i Long recer
Fomat

DecinalPlces o
T ik

Copton

etk vaie

Voo e

Vot Tt

Renier

e

Ainindex speeds up searches and sarting on the feld but may slow updates. Selecting "Yes - No
Duplcates" prohibits duplicate values in the Feld, Press F1 for help on indexed Fieds.

s (o Duplcates)

Design view. F6 = Switch panes. F1 = Help.

[image: image4.png]B Microsoft Access

b 5 o s T T

DSE|&E V][e o %X B 6,

Relationships

Animal

animal 1D

Edit Relationships

TablejQuery:

Related TablefQuery:

rimal

Towen

Create.

Cancel

[animal 1D Tanimal D

Join Type.

9 Enforce Referertial Integriy ez chiont]

T Cascade Update Related Fields
I™ Cascade Delete Related Records

Relationship Type: | One-To-fany

Microsoft Access can't create this relationship and enforce referential integrity.

Data i the table Drug-Issue' violtes referential integrity rules
For example, there may be records relating to an employes inthe related table, but no record for the employee in
the prinary tabl,

Edit the data 5o that recordsinthe primary table exist for al related records,
I you want to create the relationship withouk Follwing the rules ofreferentil integrity, clar the Enforce
Referetial Integrity check box.

B!

< i

Crestingrelaionshin

[image: image5.png]| Ele £k Yo Relstionshos ook indow

DeEERY|s =% 8 x|

Drug-Issue

Animal

animal 1D

[image: image6.png]K2 Microsoft Act

[l et on s Tods o b St

|BE-HERY])imas o]t ¥ =g Ba- 0,

Field Name Dota Type Description
EmpioyeelD Autotiunber_ Humber sutomatically assigned (o new employes,
Lasthiame Text

Frsthiame Toxt

Tite Toxt Employee's e

TiieOf Courtesy Text Titl used n salutatons,

BirthDate Dte/Time.

HreDate DateTime.

dress Text Strest or post-office box.

ity Text

Region Text State or province.

PostaiCods. Toxt

Country Text

HomePhone Toxt Phone number includes country code or area cod.
Extension Toxt Internal telephone extension number.

Photo OLE Object Picure of employee.

otes Memo (General informetion about employee's backaround.
ReportsTo Number Employee's supervisor.

Field Properties

Genert | ookp |

Fet i

Fomat

oo sk

Copton st e
etk vaie

Voo e ottt e S R E o, R e s
Vot Tt

Renier es

Howzsolengh Mo

Indexed ‘es {Duplicates OK)

Uicods Conpresson¥es

Design view. F6

[image: image7.wmf][image: image8.wmf]
[image: image9.wmf][image: image10.wmf]
[image: image11.png][\ oo theefrrcad el thepiary e

S ek

[image: image12.png]A\ Reltorshp st becnthe s erf ks i thesonecta e

e

Unique (Key) Identifiers

It is important that occurrences in a table can be uniquely identified. For example, the Book-Id in the Books table below should be a unique value. If we declare the Book-Id as primary key, the database system checks for its uniqueness whenever you insert data.

CREATE TABLE BOOKS
(Book-Id INTEGER PRIMARY KEY,
ISBN CHAR(12),
Title VARCHAR(50),
Category CHAR(10),
Price FLOAT,
Author VARCHAR(50),
Publisher-Id INTEGER)

NULL values

For certain attributes, assigning a value is not essential, it’s only optional. In such cases we can set their default value as 0 (Null) to indicate that it can be left empty.

For other fields, entering a value is mandatory. In such cases we can introduce a constraint check Not Null. This applies specifically to Key fields. If you do not insert a value into such a field, the database will respond with an error message and refuse to accept the record.

Foreign Key

In our example, we have already seen a foreign key. In the table Books, we cross-refer to the Publisher table via the foreign key, Publisher-Id.

The Books-Lent table has two foreign keys: Member-Id and Book-Id. It is the foreign key that makes it possible to create relations. The Book-Publisher relation is created using the foreign key Publisher-Id.

Referential Integrity

What if a Publisher-Id referred from Books table is not present in the Publishers table? There occurs a referential integrity problem. As a remedy, you can specify the foreign key constraint in the table definition.

CREATE TABLE BOOKS
(Book-Id INTEGER PRIMARY KEY,
ISBN CHAR(12),
Title VARCHAR(50),
Category CHAR(10),
Price FLOAT,
Author VARCHAR(50),
Publisher-Id INTEGER REFERENCES PUBLISHER(Publisher-Id))

So whenever you insert a new row in to the Books table, the database system checks the existence of the Publisher-Id you include with Publisher-Ids in the Publisher table.

Domain

The Domain gives the “range” of values permitted in a particular table column or field. It is possible to set a lower limit, an upper limit, or both. This is especially useful where, for example, in number key fields, leading zeroes tend to be suppressed. To ensure each number has the same number of digits, - provide an automated or visual validation check -, the lower limit can be set to 10,000, 100,000, or 1,000,000 for 5, 6 and 7 digit numbers respectively.

But if you want to restrict entries in a column to a specific set of values, one solution is to create a small linking (Domain) table to hold the particular values. In the Book table example above, the Categories are known and can be listed as a set.

Table: CATEGORIES
Columns: Category-Id, Category-Name

Then from the Books table you can refer to this table using Category-Id as a foreign key. But, what is the advantage of creating such a new table?

· It makes the category references unique. In the earlier case, somebody could enter 'database', 'database systems' or 'dbms' against the one information system category. When it is held in a separate look-up table, the category names are allowed to remain unique.

· Where the number of (reference) values are small, and the parent table is large, such a division can save a significant amount of space.

· It is easier to create a new category.

Alternatively, as in MS Access and its user-friendly screen Form design view, a drop-down box can be used to provide an option list of the known categories, from which the user can select one rather than key it in.

Indexes

In Queries you refer to one or more fields, and the criteria set against them, for the retrieval of the required data. As you can probably guess, if the records are searched serially, from one end of the table to the other, then the retrieval operation could be very slow. To make retrieval faster, databases like data files before them can employ indexes that allows the tables to be searched sequentially, in the order of the search field(s). Except in the case of databases,

· It is not necessary beforehand to sort the table into the order of the search field(s), as the search operation employs the hidden index (address) table(s), associated with each data table, for locating the records in the search-field(s) order.

· Indexed searches are not limited just to key fields, any and all the columns in a table can be indexed. But each Index table adds significantly to the size of the data table/database, and should be constrained to what is needed. Otherwise, it could affect the overall performance of the database, within the finite resources and power of the hardware system on which it runs.

· While indexes can make the retrieving of data many times faster, accessing and searching the indexes takes a finite amount of time. So, if the number of records to be searched are small, or a high proportion of the records have to be accessed anyway, then it can actually prove to be slower

In our library example, we can predict that the books will be searched based on the title. If we create an index based on the Title column, it will speed up search. Here is the SQL query to achieve this:

CREATE INDEX BOOK_TITLE ON BOOKS(Title)
Composite Primary Key

Take the table BOOKS_LENT
Table: BOOKS_LENDED
Columns: Book-Id, Member-Id, Date

In the table Books-Lent, none of the individual columns is unique for a row. But the columns Book-Id, Member-Id, and Date together uniquely identifies each row.

We can create a composite primary key with the columns Book-Id, Member-Id and Date. The SQL query will be:

CREATE TABLE BOOKS-LENT
(Book-Id INTEGER,
Member-Id INTEGER,
Date DATE,
PRIMARY KEY(Book-Id, Member-Id, Date))

Database Security

Security of the database involves the protection of the database against:

· Unauthorised or accidental/unwitting disclosures

· Unauthorised or accidental/unwitting change

· Wilful destruction

The protection afforded is usually aimed at two distinct user types and activities.

· To stop persons without access rights from accessing the database.

· To stop persons with access rights from performing un-permitted activities.

	Security Aspects Checklist
	Security Control Level Checklist

	· Legal, social and ethical
	· Entire database

	· Physical Controls
	· Set of relations

	· Policy Questions
	· Specific relation

	· Operational problems
	· Set of tuples within relation

	· Hardware Controls
	· Individual tuple

	· Operating system security
	· Set of attributes

	· Database system security
	· Attribute of a specific tuple

DBMS Level Protection

· Data encryption

· To avoid unauthorised access, it is worth considering both encrypting the data and applying a secret code.

Audit Trails

· If unauthorised access is gained, it is useful to find out the method and what was accessed or changed. Audit trails can be set up to identify system weaknesses and unauthorised users.

User Level Security for SQL

Each user has access rights on certain objects. Different users may be authorised with different access rights on the same object. When establishing access rights, users can have access rights set to:

· A table (relation)

· A view - limited to horizontal and vertical subsets of a table and on dynamically generated data from other relations.

Naming Hierarchy

In a DBMS, there is a two-layer approach to naming relations:

· The DBMS is made up of a number of databases. The database administrator (DBA) has permission to create and delete databases and to grant users access to a database.

· Each database is a flat name space. Users with the necessary permission can create tables and views in a database. All table names must be unique within a database.

For this purpose

· Table and view names are prefixed with the creator’s username

· The database login name is often taken as the username.

Example: Consider a table VOLCANO created by user janderson.

· The table will have the name janderson.VOLCANO.

· User janderson can access the table using the name VOLCANO.

· Other users must use the full name janderson.VOLCANO

· User janderson controls who can access the table through the GRANT command.

If the DBA creates a table and makes it available to PUBLIC then no user needs to specify the full name to access it.

GRANT command

GRANT is used to set privileges to users

GRANT privileges ON tablename

TO {grantee … }

[WITH GRANT OPTION]

Possible privileges are :-

· SELECT – user can retrieve data

· UPDATE - user can modify existing data

· DELETE - user can remove data

· INSERT – user can insert data

· REFERENCES – user can make references to the table

The WITH GRANT OPTION permits the specified user to grant privileges to other users. This is a useful means by which managers can authorise administrator privileges to their subordinates.

Privileges can be granted as well to everyone rather than selected usernames e.g.

GRANT SELECT ON userlist to PUBLIC

Summary of Audit, Security, Control and Integrity Measures
	These aspects of an information system can occupy around 70% of the capacity/resources of the organisation’s intranet network and its databases. For the system’s users, they are largely hidden, being the province of the project designer and system administrator respectively. They make up its “insurance policy”, and commercial insurers would set premiums on the basis of the measures put in place. The four aspects should not be treated as completely discrete (separate). There is a considerable overlap between them and in their successful resolution.

Taking account of them in the contract specification and design stages should ensure they are affordable and incorporated in a manner that minimises their impact on the client. Dealing with them as an afterthought could prove to be prohibitively expensive, with even limited measures significantly hampering the functions and effectiveness of the end-users. Nowadays, there is no avoiding them as a welter of new and revised legislation dictate they be included, including the Data Protection Act 1998 and European Human Rights legislation, the Computer Misuse Act 1990, Patent & Copyright Act 1988, criminal law as relevant to electronic means (Obscene Publications Act applied to the downloading of pornography), Health & Safety regulations, etc.

It is not possible to achiever 100% security, control, etc., however much money and technology is employed in pursuit of them. As the prime purpose of information systems is to provide an effective service to an organisation and its end-users, saddling systems with draconian measures that severely hamper these users is simply self-defeating. Sensible compromises usually have to be reached.

Continuous auditing by intelligent sampling of the system and its use is advisable, not just to complement less than perfect security, etc., but to ensure that the client and their ICT department/contractors do not leave themselves totally dependent on automated facilities that could never be expected to cover every eventuality and are capable of being fooled or of malfunctioning.

	Audit
	This is the business of monitoring and measuring the capacity, performance, and use of the system, soon after handover and throughout (continuous audit) its life.

The post-delivery audit is to evaluate whether or not the delivered system meets the user requirement, and assist in the identification of unresolved faults and bugs, and their underlying causes.

It is important as well to know when a system is approaching its capacity state is liable to be reached, and suitably predict and enhance the system power/capacity beforehand.

Subsequent audits are expected to provide advice as well on what is needed to enhance and maintain an effective system, e.g., the additional power/capacity required to match its increased use, new facilities and extensions.
	The initial project should tender specialist auditors to install suitable audit packages during implementation – the best project contractors would include this in the tender as a matter of course. The purpose is to record the activities of the system (audit trail) and monitor its use.

It is a feature of computers and storage devices, networks and their servers that they tend to malfunction when operating significantly below (>80%) the “maximum design” capacity quoted in their literature.

This can range from a slowing down of response times, through the loss of messages and corruption of files, to the gradual closing down (graceful degradation) of stations and networks.

It was system auditing that revealed how a single print request can occupy most of a local area network’s bandwidth (capacity) for finite time-spans, the reason why printers should be linked into a separate (print) server (volume) from the stations themselves.

	Security
	Security, in its simplest protective context, should be addressed as a multi-layered onion skin of measures and counter-measures about the information system.

Security also needs to be addressed with respect to natural disasters, both in preventing them and recovery from their impact.

· Heat and Cold

· Fire

· Water from, e.g. fire sprinkler-systems or flooding

· Power source degradation and failure. The former can produce slow fluctuations in either voltage, – i.e. generate electrical field effects that can wipe clean chips and storage devices -, or current – thus burn-out of electrical circuits

· Lightening strike – as for severe power failure.

Security can refer as well to the safe-keeping of the information, in terms of its accuracy and timeliness – see data integrity below.

Security increasingly has to encompass protection over electronic means. Telephone systems had been a prime target of industrial espionage and electronic hackers.

Now the need for most businesses to be connected to the very public Internet has made this a vital issue regarding the ingress of destructive computer viruses, hackers, etc.

Encryption should be considered for Websites and external file transfers, though it increases 4-fold the size of transactions and transfers.
	Physical shielding– Passkey/ID Card entry to locations, rooms and stations

Access security – Log-on by ID and Password, Video surveillance of positions.

Provide air conditioning or ventilation at least, needed to keep equipments from both over-heating and freezing, as temperatures below 20C will tend to cause most commercial machines to close down.

Install continuous (e.g. battery rectified) power supplies and earth-leakage-circuit-breakers (sophisticated fuse circuitry)

Maintain mirror (digital images) of station and network set-ups for reconstituting them quickly after failure or clean-up routines.

Run backup schedules, the frequency (hourly, daily, weekly) dependent on the “turnover” of the information system. The backed-up media should be stored, off-site, in a protected zone (small wall safe to purpose built concrete bunker).

Similarly, archive “historical” data, which is needed for e.g. statistical purposes but is no longer current, to this protected environment.

Document the system activities so as to produce a digital audit trail that would assist in recovering an information system (Roll-forward/Roll-back) after failure from its latest backup state; all failures cause some loss of current data.

Purchase “redundant systems” that incorporate standby hardware, automatically switched-in when the primary circuits fail. Alternatively, hire on-call computer bureau resources hired that can take-over the running of an information system when failure occurs, usually only available in major cities.

Establish maintenance routines, documentation and contracts to keep IT systems “serviced”, allowing as well for faults to be predicted and forestalled.

Install a Firewall at the organisation’s hub (electronic gateway) to the Internet to control external access both ways. Maintain an active Virus-Guard at the stations, which protects against viruses introduced by portable devices – laptops and personal disks –, and Firewall breeches, – viruses as email attachments.

	Control
	Levelling – A shared network can operate at several discrete levels, each level serving a particular user-community within the organisation with its own databases and facilities. The levels usually are assigned to the various hierarchies within an organisation, with the information made available to each level established on a “need to know” basis.

Access Rights: Privileges granted to users within a particular user-community.

Logical Transaction Logging: Within a user community, problems arise when more than one person accesses the same shared file or data at the same time.

Controlling shared access is essential for commercial real-time systems, e.g. ticket booking systems accessed by geographically-dispersed offices/agencies in which it necessary to avoid booking a seat that has just been booked elsewhere.

Sharing data access: The first person to access is granted their full privileges. All others would be “queued and granted Read only access or “locked-out” until those in front relinquish (=exits) their access, and they reach the head of the queue.
	Government regulations require access for any shared facility to be acquired by a Log-in with ID and password. In some systems, the station itself has an ID and password, but it is more usual to assign individuals with IDs and passwords, for each network and level they are permitted to access.

The Access rights that can be granted are:

· All – Read, Write, Modify, Archive/Delete - only for system administrators

· Read, Write, Modify – for data owners

· Read, Write – for data entry

· Read only – for reference purposes

· No access

Access rights can be granted to whole databases, one or more relations (=tables) within a database, tuples (=specific rows/entries) within a relation, attributes (=column/field) or domains (=attribute ranges).

Control measures

· Sequence Numbering: Routine processes and outputs are numbered in sequence, so that “lost” actions/outputs can be easily detected by their “missing numbers”.

· Non-numeric codes: They provide users with a meaningful acronym identifier rather than a unique but meaningless ID number.

	Data Integrity
	This is a question both of:

· Preventing RIRO (rubbish-in, rubbish out) – most errors occur when data is being keyed in to the tables (typo errors). It is only recently that automated data input by, e.g. scanning, has proved sufficiently accurate for it to be used as an alternative to keying-in.

· Maintaining the accuracy of the data once entered, by granting Write, Modify, Archive/Delete and other processing privileges only to those who best know and understand the data, i.e. by assigning data ownership

· Removing, – deleting or archiving -, out-of-date data that just clogs-up storage devices and may distort analysis.
	Most databases enable data input filters to be set within the design of the tables/relations and their attributes (fields)

· Data Type

· Size and format, with mask option

· Domain – values must fall within a specified range

· Optional values – only certain values allowable with pull-down menu option

· Indexing Key fields – for unique (primary) or matching (foreign) values

The only redundant (repeated) data items are linking keys between relations. With referential integrity between relations, checks are available to ensure that the values in the respective relations “match”, and a change in a parent-relation Key value will automatically update the child-relation Key value.

	System Integrity
	Timeliness (System Integrity) – It is important to ensure that data is kept in an up-to-date state. It is equally important that everyone in an organisation works to the same state of data.

Where all data is stored and accessed centrally this should not be a problem. Where the same data is distributed amongst different databases and sites, it is essential they are kept up to date in tandem.
	For real-time systems, timeliness is an impossible “ideal” even where updates are processed automatically and “immediately”.

 For more routine systems, updates should be processed as an out-of-working-hours activity, at night or at weekends, to ensure updates can be processed simultaneously to all sites and databases.

Data Integrity - Transactions

Referential integrity is the system of rules that a relational database like Microsoft Access 2000 employs to be sure the relationships between records in related tables are valid. This is known variously as maintaining the integrity, validity and reliability of the data(base).

Once enforced (selected) referential integrity ensures that entries and changes made in one table are reflected in a linked table:

· You cannot enter a value in a foreign field of a table unless that value already exists in the primary key field of the primary table.

For example, a vet can't create a new record in his Drug-Issue table unless the animal’s ID can match an animal ID in the primary Animal table. You can't record giving a drug to an animal that doesn't exist, or certainly does not in your database.

The reverse obviously is not true. If the vet is injecting a drug into an animal for the first time, the details of that animal should be entered into the primary Animal table, thus generating a new animal ID that can subsequently be recorded (and related) in the Drug-Issue table.

· You cannot delete a record from the primary table if matching records exist in a related table.

Using the above example, you can't delete an animal’s record from the Animal primary table if there are matching orders for that animal in the Drug-Issue table.

For many data systems, especially medical ones, it is unusual simply to delete records. There is an intermediate archive stage where data is removed off-line and stored separately for statistical purposes or legal reasons. With relational databases, the order in which records are archived is therefore important.

· You cannot change a primary key value in the primary table if there are any records that refer to that value in a linked table.

If the vet needs to correct a particular animal ID, then it would be necessary to delete all the records in the related tables that refer to that animal, make the necessary correction in the primary table, and then reinstate the animal’s records in the related tables.

However, should the vet want to do a complete overhaul of the animal ID’s, then it would be necessary to delete the table relationships, make the necessary modifications to the values of this key field, re-establish the relationships on completion, and then re-enforce referential integrity so as to ensure that the modifications have gone through correctly. This is why Cascade-Update is provided.

The following conditions therefore must be met before you can set referential integrity:

· The matching field from the primary table must be a primary key.

· Any value in the foreign field of the related table must already exist in the primary key field of the primary table.

· The related fields of both tables must have the same data type, which defines the kind of data, such as text, currency, or yes/no, etc. that a field contains.

· The related fields must have the same field size, such as number of text characters, the size of a whole number, be it byte, integer or long integer.

· Both tables must belong to the same Access 2000 database. If the tables are in separate files that have been linked, the files must be in Microsoft Access database (.mdb) format, and the database in which the linked tables are stored must be open.

In MS Access, referential integrity is set in the Relationship view, by clicking and dragging the primary key field from the parent Animal table, – the one side of this particular relationship -, to the foreign key field in the related Drug-Issue table, - the many side of this particular relationship.

The default state allows a relationship to be set up without enforcing referential integrity. To enforce it, it has to be selected in the dialogue box before pressing the Create button.

But note first that the Relationship Type is Indeterminate. If the relationship has been activated (dragged) correctly in this Relationship view, then it can only mean that the key fields in the respective tables have not been correctly indexed in their table design views. To continue would simply produce the reaction here.

Indexing is the mechanism by which relational databases order or sort the records in their tables, not just to speed up the search and retrieval of data from the respective tables, but also to match records between linked tables. Referential Integrity cannot be enforced if the correct indexes have not been set (Yes) for the primary (No Duplicates) and foreign keys (Duplicates OK) respectively.
In MS Access, this can be remedied while remaining in Relationship view. Close the Edit Relationship dialogue-box, click on either table with the right button and select Table Design. For the Animal Table, check the Primary key field for:

Closing this table design view returns you to the Relationship view, where you can repeat the process for the related Drug-Issue table.

Should you not check all three, then the next time you try to enforce referential integrity when setting-up the relationship, you are liable to receive this reaction. In this case, either the Field type and/or Field Size does not match up, and referential integrity cannot be established.

However, even when all the criteria is met, and referential integrity can be established, setting up the relationship can still bring about the following reaction. All this long error message is trying to say is that the linked table contains a foreign key value that does not match any of the values of the primary key in the parent table, i.e. there is an animal ID in the Drug-Issue table that can’t be found in the Animal table.

Should all the foreign key values match up to the related primary key values, then the reward is the establishing of a relation, like the one shown here, across which referential integrity can be maintained.

Cascading Update and Delete.

Access 2000 offers a feature that lets you make an exception to the rules on deleting records or changing primary keys, without violating referential integrity. Changes made to the primary table are automatically applied to the related table through a process called cascading. Cascading Update applies any changes that you make in the primary table to the matching records in the related tables.

For example, a change to the unique customer ID number in the Customers table "cascades" to the Orders table.

· Orders created using the old customer ID are automatically updated to the new customer ID.

· This avoids orders being accidentally "orphaned" because they refer to a customer ID that no longer exists.

Cascading Delete removes all matching records in the related tables when a record in the primary table is deleted. For example, the deletion of a customer record from the Customers table cascades to the matching order records in the related Orders table, cascading in turn to the matching detail records in the Order Details table.

· All matching order records in the Orders table are automatically deleted.

· Then, for each deleted order record in the Orders table, all matching detail records in the Order Detail table are also deleted.

· However, this would remove orders that are pending as well those that are already fulfilled, so Cascading Delete should be used with great caution, if at all.

Transaction Logging Concepts

The transaction concept is central to the operation of modern database management systems. A short review is provided here as background. Transactions are an error handling mechanism and program structuring mechanism. As an error handling mechanism, they allow you to do an arbitrary amount of work in a system and then change your mind. When you do work within a transaction, you can tell the system

· "Oops, I don't want to do this after all. Please put everything back the way it was before I started."

Or you can say

· "OK, I'm finished now. Please make all my changes official."

When a transaction is executing, we say it is active or in-flight. When a transaction is completed normally, we say that it is committed. If a failure occurs before your transaction is complete, the system will automatically undo any work that cannot be finished because of the failure. The process of undoing the effects of an incomplete transaction is called rollback.

Transaction Rollback

When an application decides to undo a transaction rather than commit it, transaction rollback is initiated. This occurs when the application executes an UNDO statement, when an interactive user presses the "stop" key on the keyboard, when a lock-wait is cancelled by an interactive user, or when a lock wait is timed out.

The processing required to perform rollback is handled automatically without the need for any intervention by the application. To roll back an active transaction:

· The database manager reads, in reverse order, all the log records generated by the transaction, back to the point at which it began.

· The effects of each change are reversed and the original data values that existed just before the change was made are restored.

As these changes are being undone, the database is being changed again. These new changes are also logged. This generates additional log records during the rollback operation just as they would be generated during the original processing.

The sequence of events for undoing a single database activity is the same as that described previously for forward processing. The log records identify which blocks have to be changed and also contain all data needed to perform the undo operation.

Transactions can be rolled back explicitly;

· At the request of the application or the user.

· Automatically by the database manager when an error occurs and the application is no longer able to communicate with the database.

Crash Recovery

Crash recovery is the process whereby the database is restored to a consistent state after a failure (crash) occurs. When a failure occurs, one or more transactions may be active and not yet committed. Since transactions must be atomic, the effects of these partially completed transactions must be removed from the database. Changes made by completed committed transactions may not have been written to disk yet. Since transactions must be durable, any committed data that was lost must be recreated.

Logging Concepts

The database manager achieves the transaction properties of atomicity and durability by using a technique called undo-redo logging, combined with write-ahead logging.

· As database changes are made by one or more transactions, notations or descriptions of these changes are durably recorded on disk in a type of transaction log file known as an undo-redo log.

· When an error occurs during a transaction, these log records are used to roll back the transaction, removing all of its effects on the database (restoring all data items to their previous values).

· The same log records are also used during crash recovery processing to restore the database to a consistent state after a failure.

Database Quality

Quality does not equate to integrity. Impaired integrity implies poor data quality, but high integrity does not ensure high data quality. Quality arises from a combination of:

· System integrity

· Data integrity

· Consistency

· Accuracy

System Integrity

System integrity is achieved when the contents of data retrieved from a database is the same as the contents of that data when it was inserted. Standard mechanisms for insuring against the corruption of the data content residing in the database are;

· Transaction rollback and logging - common in commercial DBMS.

· Archiving and Backup procedures.

Data Integrity

Data Integrity is primarily concerned with ensuring that the data entered into the database, in the first place, is accurate, and is a feature closely associated with Referential Integrity. The main means of data input is human keying and document scanning, neither of which is foolproof! The standard mechanisms for preventing RIRO (rubbish-in rubbish out) are:

· Primary key – unique identifier.

· Data type – obtained from a pull-down option list

· Data size and format – obtained from a pull-down option list

· Input mask – fine filter for format control.

· Default values – automatically entered when columns are left blank

· Validation rules – setting of domain range and permissible values

· User defined integrity - ensure the database properly handles the user data values that are stored within a database application.

· Event triggers.

· Security access limits.

· Custom data entry and data editing forms (also see consistency below).

Consistency

Consistency is achieved when the state of all data across a system is arrived at by a series of consistent procedures. This is usually serviced through pre-set and tested application programs. It means that your design will include applications for carrying out functions easily, always doing the same thing, the same way, every time.

For example, this can be implemented by providing the user with a front-end menu system, e.g. MS Access’s switchboard. When the database is opened by the user, the screen displays the opening screen-form menu, with the database itself hidden behind. The user can progress through the menus and initiate functions by clicking on a menu option, in reality a command button that activates a macro (application program), which opens the next menu, carries out the function, etc. Individual macro applications can carry out simply actions or complete sequences of complex functions.

Accuracy

Accuracy is the correctness of data in a real-world sense and is the responsibility of the data owner. By implication, integrity and consistency, together, do not guarantee accuracy. If your application uses weight data, but the scale on which the weights were measured are not accurate, there is little you can do as the application developer to improve the quality of this weight data.

Transactions Processing (or Concurrency) Control

The major objective of concurrency control is to ensure an orderly access to data contained within the database, once the access control function has completed its task. Concurrency control needs to answer the question:

“What happens when two or more users want the same information at the same time?”

The answer is to,

· Prevent all users but one from access to that data in the database,

· Until that user has completed their processing,

· Then release that data area in the database from that user, and

· Assign it to the next user who needs access to it.

The first issue to resolve here is how big is the data area, or in technical terms what is the level of granularity associated with the locking mechanism:

· The whole database.

· Particular table(s) or view(s) within the database

· Particular row(s) of a database table or view

· Particular column(s) within particular row(s) of a database table or view.

Obviously the first is the coarsest level of granularity, and is the easiest to implement but then imposes significant overhead burdens it terms of efficient database performance: the last is the finest level of granularity, which is the hardest to implement but offers the least overhead burden and therefore reduction in database performance.

In addition to granularity, additional flexibility can be introduced by having the ability to have both shared locks and exclusive locks.

· A Shared lock allows other users to read data from a locked data area, but does not allow either update or deletion of data within that data area. Shared locks would tend to be placed on data areas where only data retrieval, i.e. Select, can occur.

· An Exclusive lock prevents any sort of access at all to data within the data area. They would tend to be placed where most functions, i.e. either an Insert, Update or Delete, can be executed.

 If a locking mechanism is put in place to control concurrency then this mechanism also needs to deal with what is known as the "deadly embrace", where two or more users effectively lock each other out by accessing data areas that the other users want.

How does "deadly embrace" or deadlocks arise in a multi-user database system?

Example: Using the student administration information system discussed above, the database that supports this information system would include the following tables. Assume that the locking granularity is at the level of individual rows within the tables, and that locks are retained until the end of the transaction:

 SUBJECTS

	Subject-Code
	Subject-Name
	Credit-Points
	Degree-Year
	Semester-Offered

	COMP101
	Introduction to Computing
	6
	1
	Both

	ACC101
	Accounting I
	6
	1
	Autumn

 COURSES

	Course-No
	Course-Name
	Undergraduate/Postgraduate

	2211
	Information Technology
	Undergraduate

	2213
	Accounting
	Undergraduate

 SUBJECT_COURSES

	Course-No
	Subject-Code

	2211
	Comp101

	2211
	Acc101

	2213
	Comp101

	2213
	Acc101

Now suppose that,

· Enrolment officer A was changing the course identifier "2211" to "9999",

While at the same time

· Enrolment officer B was changing the subject identifier "Comp101" to “Comp001"

The first transaction would require the following locks:

· Obtain an X-lock on the first row in the COURSES table as "A" wishes to update a value for this row.

· Obtain an X-lock on the first and second rows in the SUBJECT-COURSE table as "A" wishes to update a value for this row.

· Obtain an S-lock on the first and second rows in the SUBJECT table as although there are no changes for this row, there is a primary key/foreign key consideration.

 The second transaction would require the following locks

· Obtain an X-lock on the first row in the SUBJECTS table as "B" wishes to update a value for this row.

· Obtain an X-lock on the first and third rows in the SUBJECT_COURSES table as "B" wishes to update a value for this row.
Obtain an S-lock on the first and second rows in the COURSES table as although there are no changes for this row, there is a primary key/foreign key consideration.

Looking at the two transactions over time, the following situation arises:

	Period
	A transaction
	B transaction

	T1
	Obtain an X-lock on the first row in the COURSES table as "A" wishes to update a value for this row.
	Obtain an X-lock on the first row in the SUBJECTS table as "B" wishes to update a value for this row.

	T2
	Obtain an X-lock on the first and second rows in the SUBJECT_COURSES table as "A" wishes to update a value for this row.
	Attempt to obtain an X-lock on the first and third rows in the SUBJECT_COURSES table as "B" wishes to update a value for this row. This will only be partially granted as "A" has already locked the first row of this table, i.e. "B" will gain an X-lock on the third row of this table.

	T3
	Attempt to obtain an S-lock on the first and second rows in the SUBJECT table as although there are no changes for this row, there is a primary key/foreign key consideration. This will only be partially granted as "B" has already lock the first row of this table, i.e. "A" will gain an S-lock on the second row of this table.
	Waiting to obtain an X-lock on first row of the SUBJECT_COURSES table.

	T4
	Waiting to obtain an S-lock on first row of the SUBJECTS table.
	Waiting to obtain an X-lock on first row of the SUBJECT_COURSES table.

	T5
	Waiting to obtain an S-lock on first row of the SUBJECTS table.
	Waiting to obtain an X-lock on first row of the SUBJECT_COURSES table.

	T6
	Waiting to obtain an S-lock on first row of the SUBJECTS table.
	Waiting to obtain an X-lock on first row of the SUBJECT_COURSES table.

	T7
	Waiting to obtain an S-lock on first row of the SUBJECTS table.
	Waiting to obtain an X-lock on first row of the SUBJECT_COURSES table.

From time period T4 onwards the database is in a deadlocked state. In these situations two things need to happen.

· The database management system has to recognise that the database (for these two transactions only) is in a deadlocked state. Normally this would be done by determining whether transactions are taking longer than a certain time period, or by investigating a wait-for log, i.e. determining what transactions are waiting for other transactions to complete. For instance entries in this log for the above example may look like:

Transaction A is waiting for transaction B to complete.
Transaction B is waiting for transaction A to complete.
· The second step is to resolve the deadlock. This normally means cancelling one of the transactions, say in the above example, transaction "B": this would then allow transaction "A" to complete processing, and once this had occurred the database management system would then attempt to re-execute transaction "B".

Database Recovery

The aim of database recovery is to ensure that a database can be restored from a damaged state to an earlier consistent or undamaged state after the database has suffered due to some sort of catastrophic event, such as total systems failure, an abnormal ending to an application program that interacts with the database, or a system crash of the database management system.

Other events such as fires, earthquakes, and floods could also be included here. In these cases, database recovery normally means having another physical copy of the database stored at a separate location from which to recover.

For stand-alone databases, with only a single user, back-up procedures and back-up copies of the database are normally sufficient to ensure that effective recovery can occur when needed. Recovery would mean copying the backup database over the current version of the damaged database and then reprocessing the transactions, from the time that the back-up copy was made until the current time.

For example, if back-up copies of the database are made each day and the current database is corrupted, then recovery would entail copying the previous day's database and then re-processing all the transactions entered against the database for today. This type of recovery procedure is known as "restore and re-run".

Where the database has multiple-users, a more complex process should be put in place. Where the database is supporting an on-line system, recovery cannot be left to restoring a previous copy of the database and then re-processing a group of transactions.

In these situations a transaction log and a database change log will be maintained. The first will store information about the transactions processed against the database; the second is a facility that contains both before-images and after-images of database records that have been changed in some fashion by a transaction.

For example, consider the example above for the student administration information system and the transaction being processed by student enrolment officer "A". The database change log would store the following before-image containing the following data:

COURSES (Row #1, Course-No, "2211")

SUBJECT_COURSES (Course-No, "2211", Subject-Code, "Comp101"; Course-No, "2211"; Subject-Code, "Acc101")

While the after-image would contain the following data:

COURSES (Row #1, Course-No, "9999")

SUBJECT_COURSES (Course-No, "9999", Subject-Code, "Comp101"; Course-No, "9999"; Subject-Code, "Acc101")

These images of the database allow two fundamentally different recovery strategies to be employed. Backward recovery (or ROLLBACK) takes the current database that has been corrupted and applies the before-images to the database as transactions. Once this has occurred, that database is then in a former, but correct state.

The database is then updated with the transactions appropriate to move the database to what should be its current state. In many ways ROLLBACK is merely a sophisticated version of the "restore and re-run" strategy discussed above.

While ROLLBACK uses before-images, ROLLFORWARD uses after-images. In this case the current but corrupted database has the after-images applied to it to transform it into a non-corrupted state. This strategy has a lot of advantages over ROLLBACK in that only a few after-images will need to be re-processed, rather than processing both before-images as well as re-running the intervening transactions.

The Full-Table Scan

A full-table scan occurs when the database server reads every record in a table in order to execute an SQL statement. Full-table scans are normally an issue when dealing with queries or the SELECT statement. However, a full-table scan can also come into play when dealing with updates and deletes. A full-table scan occurs when the columns in the WHERE clause do not have an index associated with them. A full-table scan is like reading a book from cover to cover, trying to find a keyword.
You can avoid a full-table scan by creating an index on columns that are used as conditions in the WHERE clause of an SQL statement. Indexes provide a direct path to the data the same way an index in a book refers the reader to a page number. Each Index is an address list of the table entries in sequential order of the column to which it applies. Adding an index can speed up data access.

Although programmers usually frown upon full-table scans, they are sometimes appropriate. For example:

· You are selecting a significant ratio of the rows from a table – hit rate>=15%
· You are updating a significant ratio of the rows in a table – hit rate>=15%.
· The tables are small.

In the first two cases an index would prove inefficient in accessing 15% or more of the table because the query server would have to refer to the index, read the table, refer to the index again, read the table again, and so on. Indexes become comparably more efficient when the data you are accessing is a small percentage, less than 10 % of the total table, and are essential when accessing fractions or a percent.

In addition, indexes are best used on large tables. You should always consider table size when you are designing tables and indexes. Properly indexing tables involves familiarity with the data, knowing which columns will be referenced most, and may require experimentation to see which indexes work best.

[image: image1]
Note: When speaking of a large table, large is a relative term. A table that is extremely large to one individual may be minute to another. The size of a table is relative to the size of other tables in the database, to the disk space available, to the number of disks available, and simple common sense. Obviously, a 2GB table is large, whereas a 16KB table is small. In a database environment where the average table size is 100MB, a 500MB table may be considered massive.

Adding a New Index

You will often find situations in which an SQL statement is running for an unreasonable amount of time, although the performance of other SQL statements seems to be acceptable. This can occur when:

· The conditions for data retrieval change

· The table structure has been altered.

· A new screen or window has been added to a front-end application.

One of the first things to do when you trouble-shoot is to find out whether the target table has an index. In most of the cases we have seen, the target table has an index, but one of the new conditions in the WHERE clause may lack an index.

Looking at the WHERE clause of the SQL statement, the question is, Should we add another index? The answer could be yes if:

· The most restrictive condition(s) returns less than 10 percent of the rows in a table.

· The most restrictive condition(s) will be used often in an SQL statement.

· Condition(s) on columns with an index will return unique values.

Columns are often referenced in the ORDER BY and GROUP BY clauses. Composite indexes may also be used. A composite index is an index on two or more columns in a table.

· These indexes can be more efficient than single-column indexes if the indexed columns are often used together as conditions in the WHERE clause of an SQL statement.

· If the indexed columns are used separately as well as together, especially in other queries, single-column indexes may be more appropriate.

Situations often arise when a good case could be made for some or all of the options open to you. Don’t prevaricate, use your judgment and run trials on the data to see which type of index best suits your database structure and the various SQL statements you wish to run.

· Sometimes, it drops down to a compromise in favour of the SQL statement or statements you need to run most frequently, have the highest priority, or arise at critical times.

· The same approach should be taken when deciding between full table scans and indexed scans, especially when they fall in the grey area between 1% and 15 % of rows being accessed.

Object-Oriented Databases

Where database technology is heading both in terms of current implementations and future expectations, this topic will attempt to address with the question, “what will database management systems look like in the next five to ten years?” Obviously viewing any further horizon would not be appropriate, given the enormous change that has occurred over the last five to ten years. The two major thrusts emerging with respect to current database technology are to incorporate object-oriented functionality and to provide effective and efficient database services over a network, typically an organisation’s intranet, i.e. the client-server implementation of database technology.

An object-oriented database (OODB), as the name implies is a database built on objects. Object-oriented anything represents the paradigm shift that is occurring across the whole span of information technology, whether it is an operating system, a programming language, an application program or a database management system.

So to begin to understand what an object-oriented database is, we need to gain a better idea of what an object is, and what some of the other terms associated with this new paradigm mean in terms of developing and delivering IT.

McFadden and Hoffer (1994: p.168) provide the following definition: An object is a structure that encapsulates or packages attributes and methods that operate on those objects. Objects are abstractions of real-world entities that exhibit states and behaviours. The state of an object is expressed in the values of the attributes of the object. The behaviour of the objects is expressed by a set of methods or functions that operate on its attributes.

This fairly technical definition takes on more meaning when applied to an example. You as a student are a real-world entity, as you can obviously touch your face. Your real-world entity can also be abstracted, or represented as an object by a collection of information and procedures. What would this abstraction contain? The first would be information of some sort. Such data attributes would characterise what a student is, for example, names, addresses, birth dates, gender, intellectual ability and so on. All of these things would be considered attributes of the object.

If this was all to an object, then they would be equivalent to the concept of an entity in an E-R data model. An entity type is a thing of interest and it is defined or characterised by its attributes. In a similar fashion we can have instances of objects, of which you would be an instance of the student object, just as we can have instances of entity types. So, is there any real difference between entity types and objects?

The answer lies in the second part of the definition given above. Objects also contain methods or procedures. A classic method or procedure for the student object would be something that works out a student's age. That is, the object would have a method which determined the current date (usually using the system date of the computer) and then works out the difference between this date and the birth date of the student; depending on how this difference is calculated the procedure may then be required to work out the age of the student in terms of years, months and days.

There is no equivalent within the E-R data model to a procedure or method. If the E-R model was to store a student's age, then it could only do this as a separate attribute, possibly leading to a transitive dependency between two non-key fields and therefore meaning the data structure is no longer in 3NF. From this example we can see that object-oriented represents both an extension as well as a new direction over what could be the traditional view of the E-R data modelling technique.

We have also seen, in an earlier topic, another object-oriented extension of the E-R data modelling technique. This was the use of the ISA relationship between two entity types, which is related to the concepts of generalisation and specialisation, as well as the concept of inheritance discussed later in this topic.

Other Object-Oriented Concepts

Encapsulation. It is another object-orientated concept that means certain things are hidden by the object from the external world. Using the student example above, a user would be unaware that student age is not stored as an attribute, rather it is stored as a method. The object-oriented view would be that, to the outside world, this is an unnecessary piece of information when all the external user requires to know is the student's age. However, encapsulation may also mean that data, which a manager needs to successfully perform a query on the OODB, is unavailable.

Classes. Similar objects may be grouped together to form a class. This grouping can happen in two ways, either a super-class is created above a collection of objects, using the process of generalisation, or an existing group of objects is broken up and into a number of new categories, - a number of new object classes -, using the process of specialisation.

For example, using the process of specialisation the collection of student objects could be re-categorised into the following super-class and sub-classes using the notation described in McFadden and Hoffer (1994, p.173):

In this case the object class STUDENTS has become a super-class which stores the common attributes and methods, and as a super-class has sub-classes consisting of under-graduate students and postgraduate students.

You should note that this solves a design problem for the "Student Courses" table used in previous topics, which required two fields "Undergraduate" and "Postgraduate" to determine by which category a student could be classified. As the above example indicates, object-oriented techniques have actually improved the database design.

Inheritance. If we can have classes then we must have inheritance. Sub-classes inherit characteristics from their super-classes. This is required to avoid data redundancy. In the example above, the POSTGRAD sub-class inherits the attributes Student-Id-No, Full-Name, etc., as well as the method Calculate-Age, from its super-class STUDENTS.

Identity. Something must uniquely identify and therefore separate one object from another. In a relational database, this was handled by the primary key. In an object- oriented database, identification is not part of either the attributes or the methods stored within the object, it is handled by the database management system itself. This has all sorts of consequences in comparison to relational databases.

For example, referential integrity no longer applies. This means that propagation of changes in key field values, where these keys are foreign keys in different tables, no longer occurs. The whole concept of a foreign key is not applicable in an object-oriented database. To make this point clearer, take the following example from a relational database:

Students
	PRIVATE
Student-Id-No
	Student-Name
	Student-Gender
	Date-Of-Birth

	9809611
	JONES, John
	M
	22-Aug-78

	9802341
	BROWN, Margaret
	F
	01-Sep-67

	9876902
	SMITH, Phyllis
	F
	13-Apr-74

Enrolments

	PRIVATE
Student-Id-No
	Subject-Code
	Year
	Semester
	Result
	Grade

	9809611
	Com01
	1997
	Autumn
	65
	C

	9802341
	Com01
	1997
	Autumn
	58
	P

	9876902
	Is221
	1997
	Autumn
	76
	D

	9809611
	Com02
	1998
	Autumn
	69
	C

	9802341
	Com02
	1998
	Autumn
	55
	P

	9876902
	Is222
	1998
	Autumn
	62
	P

In the relational implementation, there would be a one-to-many relationship established between the STUDENTS and the ENROLMENTS through the common column, Student-Id-No. Assuming that referential integrity has been set between these two tables, if there was a change in the value of Student-Id-No for John Jones in STUDENTS, referential integrity would insist that this change should be cascaded to the two related rows in the ENROLMENTS. If this did not happen then this relational database would have inconsistent data.

Would the same thing need to occur within an object-oriented database? The answer is NO. The objects for the above data would look like the view over-page:

In an object-oriented system, there is no data redundancy as the Student-ID-No is stored only within the STUDENT objects and not part of the enrolment objects. In fact for a full object-oriented database implementation, Subject-Code would not be part of the ENROLMENT objects for similar reasons. It is the responsibility of the OODB to maintain suitable links between the appropriate STUDENT objects and their related ENROLMENT objects.

That is, in the example above, the object oriented database management system must ensure that links are maintained between Object #1, and Object #154, as well as Object #1 and Object #202, as well as the link between Object #33 and Object #571. This means we can change the value of the student identification number without having to worry about propagating this change to related objects.

Domains.

Another difference between relational and object-oriented systems occurs with this concept. In the relational system a domain was the set of legal values that a column within a relation could store. In an object-oriented system, given that objects are stored separately, we are not as concerned with the values being stored by the objects but rather with the type of data being stored. As McFadden and Hoffer
indicate this can be quite varied and in fact can include anything that can be stored in some sort of binary format

Limitations of Object-Oriented Databases

Given the sorts of advantages that the object-oriented data model provides, why have these sorts of databases not replaced the now older relational model? McFadden and Hoffer consider that this model still has the following limitations that will need to be addressed before the model can assume a predominant position over the relational model, just as the relational model at first did not immediately dominate the database market against the hierarchical and the network data models:

· Given the immaturity of OODBs there has not been any standard developed either at the national, such as through the American National Standards Institute (ANSI), or the International Standards Organisation (ISO). However, no doubt these will come in the not too distant future, just as with the relational model is took some time to standardise SQL. Lack of OODB standards mean that at present what is on offer is proprietary systems that may only work on particular hardware platforms.

· Lack of standards also means that there are not the generally available tools that assist in defining and implementing an OODB. In particular there is little in the way of CASE support for OODB.

· When relational database management systems were first realised, the principal problem concerned their performance. At present there are too few, fully developed, large-scale operational information systems that would truly test those OODB products currently on the market. In particular performance has not been tested where there are substantial numbers of users all requiring concurrent access to the database.

· The final major problem concerns the ability of end users to access data. Obviously given the differences between the relational model and the object-oriented model, managers will not be processing SQL queries against the OODB. This could prove to be the major hurdle for the object-oriented database management systems to surmount before they establish their true superiority over relational databases, i.e. the development of a suitable query language with the same flexibility, functionality and ease of use that are the strengths of SQL.

The fact is, the early developments of OODB were customer-driven and related directly to business strategies and political initiatives, rather than technological concepts and philosophies. A case in point is Chrysler who led the car manufacturing market from the late 1970’s in an international initiative to drive down the cost of parts through standardisation, and thus strengthen the hand of the major car assemblers with respect to their component suppliers. They were in a mature business, had long-term experience of scientific management and coherent information systems, and knew exactly what they wanted. For them, relational databases were not the answer, they did not want versatility and features imposed on them at any cost, rather they sought efficiency and transparency from their $4billion investment programme, and they have enjoyed nearly twenty years of payback ever since.

This is not the same case for the major computing companies, who are looking to develop products attractive to extremely diverse markets and customers, most of whom are still seeking solutions rather than be able to dictate them. The principal database players in the IT sector are being whittled down to IBM, Oracle and Microsoft, the first two who have keep it simple ingrained in their corporate ethos. Microsoft meanwhile has struggled to come up with a workable version of an OODB for its own software platforms, let alone an OODB package that they would dare to release to their major clients in any form. However, their fallback strategy of developing a hybrid product, their so-called Sequel (SQL) OODB platform is something others are likely to imitate.

The bottom line for relational databases, and their design, always has been the non-redundant storage of data, at whatever cost to other considerations. But even the much-vaunted ability for everyone to access all has simply resulted in fortunes being spent since to avoid that possibility.

Adjusting the relational database designer’s focus onto speedy and efficient functionality through for example, a more generalised hierarchical approach to data organisation, is feasible in the short term at least. It will be from the experiences gained of operating in something resembling an OODB environment, as well as the more accurate predicting (analysis) of what is really wanted from information systems, – applying the Pareto principle -, which will bring to the surface the necessary tools and applications.

IMPLEMENTED Objects

STUDENTS

Student ID No

Full Name

Full Address

Calculate Age

�

�

(Field) Data Type,

which in this case should be Number

Field Size,

which in this case should be Long Integer

Indexed,

which in this case should be Yes (No Duplicates)

�

�

�

Data Type

Field Size

Format

Default value – the value set if no value is entered

Validation Rule. – the finest granularity for validation, to set the domain range for the field, or specify the verifiable (allowable) values.

OBJECT #571

9876902

IS222

1988

Aut

62

Grade is P

OBJECT #202

0809611

COM02

1997

Aut

69

Grad is C

OBJECT #154

0809611

COM01

1997

Aut

65

Grade is C

OBJECT #33

9876902

SMITH Phyllis

The Grange

Cambridge

13 Apr 74

Calculate Age 23

STUDENTS

Student ID No

Full Name

Full Address

Calculate Age

POSTGRADS

Previous Degree

Work Experience

Fees Balance

UNDERGRADS

Prior Learning

Honours Stream

HECS Liability

�

OBJECT # 01

0809611

JONES John

34 Fairview Edinburgh

22 Aug 78

Calculate Age 19

Abstracted Objects

Real World Objects

�

ENROLMENTS

Student ID No

Subject Code

Year

Semester

Result

DetermineGrade

�

�

###

###

� Fred McFadden & Jeffrey A Hoffer, 1994, Modern Database Management, pp170.

Department Computing & Internet Technologies
Page 52

