Relational Database Systems

Unit : DH3D 35
Support Notes

[image: image2.wmf]
[image: image3.wmf][image: image4.wmf]Author: Jim Anderson

 Editor: Bob Graham
Table of Contents
3Introduction to Databases – Their Evolution

4What is a Data Model

6Steps In Building the Data Model

7Components of a Data Model

7The E-R Model

8The Entity

10Data Attribute

11Relationships

13E-R Notation

15Object Definition

15Recording Information in Design Documentation

17Developing the Basic Schema

18Refining the Entity Model

21Primary and Foreign Keys

22Simple Keys

22Compound Keys

25Add Attributes to the Model

27Generalization Hierarchies

29Overview of the Relational Model

31Relational Model Notation

32Relationships and Keys

34Relational Data Manipulation

37Normalisation

42Summary of Normalisation

43 Normalisation Worked Example

46Advanced Normalization

	Designing the Database………..…………………………………………………..49

	Database Integrity…………………..…………………….…………………..……..50

	Database Security………………………………………………………………..….…53

	

	Data Integrity – Transactions………………………………………………...…55

	Cascading Update and Delete……………………………….……………………58

	Transaction Logging Concepts…………………………………………………..58

	Transaction Rollback………………………………………………………………....59

	

	Database Quality………………………………………………………………………..60

	Transaction Processing (or Concurrency) Control……………………..61

	Database Recovery……………………………………………………………………..64

	The Full Table Scan…………………………………………………………………….65

	Adding a New Index…………………………………………………………………..66

	

	Object-Oriented Databases………………………………………………………..67

	

	Data Definition Language…………………………………………………………..73

	Data Manipulation Language……………………………………………………..78

	SQL 4A Tutorial…………………………………………………………………………..84

	SQL 4B Tutorial…………………………………………………………………………..89

	SQL 4C Tutorial…………………………………………………………………………..91

	Access Rights……………………………………………………………………………..96

	

	

Introduction to Databases – Their Evolution

Traditional File Approach: In the early days of computerised data processing, each department would have its own, separate data files for the applications it needed. For example, the personnel department could have a filing system containing the general employee details of name, address, next of kin, etc., as well as specific, personnel related information like job title, qualifications, training courses, etc. The payroll department would hold the same general details about employees, as well as their own specific details about pay rates, national insurance numbers, banking details, etc. Furthermore, the early, centralised computer systems would run separate data files and application programs for each department. Such a scenario would lead to:

· Duplication of data –then, an even more significant cost factor than today.

· Data integrity problems - e.g. employee address changed in one file, not the others.

· Incapacity to share data – frustrating for departments, but a liability for senior

Management and specialists who wish to view the business as a whole.

Database Approach: To resolve these problems, the data from all departments was centralised to allow every applications to access any source of data. This solved the problem of unnecessary redundancy (duplication) and inconsistency, but introduced two new major problems.

· Maintenance Overhead – e.g. If a data item required to be input, amended or deleted from a centralised file, then every department had to modify their programs accordingly, even if their applications did not need to access this data.

· Security Breeches – Confidential and commercial sensitive was accessible by every

application and hence user.

Database Management Systems (DBMS). A DBMS is a software interface, a layer of software that sits between the application and data, which was designed to resolve these issues. Its two essential features are:

· Program-Data Independence - allows each application/user to access only the data

that is appropriate to their function.

· Security Control - provides each application/user with a filtered view of the data

pertinent to their responsibilities.

Advantages of the DBMS Approach

Data Independence – changes in the structure of the data does not affect the programs that access the data, except of course for applications that need to reflect the changes.

· Redundancy Control – improved data integrity, with most data items stored just the once.

· Security Control – access rights afforded to each user, e.g. read-only, read-write,

all, or none.

· Development Time: its 4GL aspect allows for the fast set-up and modification of

applications and outputs.

What is a Data Model

A data model is a conceptual representation of the data structures that are required by a database. The data structures include the data objects, the associations between the data objects, and the rules that govern the operations on these objects. As the name implies, the data model focuses on what data is required, and how it should be organised, rather than on the operations that could be performed on the data. A data model is independent of hardware and software constraints. Rather than attempting to represent the data as a database would see it, the data model focuses on representing the data as the user views it in the real-world. It serves as a bridge between the concepts that make up real-world events and processes, and the physical representation of these concepts and processes in a database.

Methods

There are two widely recognised methods for creating a data model, the Entity-Relationship (E-R) approach, most closely associated with relational database systems, and the Object-Orientated approach for object-orientated database systems. This course is focused primarily on the E-R approach.

Data Modelling in the Context of Database Design

Data modelling is preceded by the planning and analysis activities. The effort devoted to this stage is proportional to the scope of the database. The planning and analysis of a database intended to serve the needs of an enterprise will require more effort than one intended to serve a small workgroup.

The information needed to build a data model is gathered during the requirements analysis. Although not formally considered part of the data modelling stage by some methodologies, in reality the requirements analysis and the ER diagramming part of the data model are done at the same time.

Requirements Analysis

The goals of the requirements analysis are:

· To determine the data requirements of the database in terms of primitive objects

· To classify and describe the information about these objects

· To identify and classify the relationships among the objects

· To determine the types of transactions that will be executed on the database and the interactions between the data and the transactions

· To identify rules governing the integrity of the data

The modeller or modellers work with the end-users of an organization to determine the data requirements of the database. Information, needed for requirements analysis, can be gathered in several ways:

· Review of existing documents - such documents include existing forms and reports, written guidelines, job descriptions, personal narratives, and memoranda. Paper documentation is a good way to become familiar with the organization or activity you need to model.

· Interviews with end-users - these can be a combination of individual or group meetings. Try to keep group sessions to under five or six people. If possible, try to have everyone with the same function in one meeting. Use a blackboard, flip charts, or overhead transparencies to record information gathered from the interviews.

· Review of existing automated systems - if the organization already has an automated system, review the system design specifications and documentation

The requirements analysis is usually done at the same time as data modelling. As information is collected, data objects are identified and classified as entities, attributes, or relationships. They are assigned names, and defined, using terms familiar to the end-users, then modelled and analysed using an E-R diagram. The diagram is reviewed by the modeller and end-users to determine its completeness and accuracy. If necessary, the model is modified, which sometimes requires additional information to be collected. The review and edit cycle continues until the model is certified as correct.

Three points to keep in mind during the requirements analysis are:

· Talk to the end users about their data in "real-world" terms. Users do not think in terms of entities, attributes, and relationships but about the actual people, things, and activities they deal with daily.

· Take the time to learn the basics about the organization and its activities that you want to model. Having an understanding about the processes will make it easier to build the model.

· End-users typically think about and view data in different ways according to their function within an organisation. Therefore, it is important to interview the largest number of people that time permits.

Steps In Building the Data Model

While the E-R model lists and defines the constructs required to build a data model, there is no standard process for doing so. Some techniques, such as Idefix, specify a bottom-up development process, with the model built in stages. Typically, the entities and relationships are modelled first, the key attributes are identified, finally, non-key attributes are added. Other experts argue that using a phased approach requires too many meetings with the end-users. The sequence used here is:

· Identification of data objects and relationships

· Drafting the initial ER diagram with entities and relationships

· Refining the ER diagram

· Add key attributes to the diagram

· Adding non-key attributes

· Diagramming Generalization Hierarchies

· Validating the model through normalisation

· Adding business and integrity rules to the Model

In practice, model building is not a strict linear process. As noted above, the requirements analysis and the draft of the initial ER diagram often occur simultaneously. Refining and validating the diagram may uncover problems or missing information, which require more information gathering and analysis

Data Model Summary

· Data modelling must be preceded by planning and analysis. Planning defines the goals of the database , explains why the goals are important, and sets out the path by which the goals will be reached. Analysis involves determining the requirements of the database. This is typically done by examining existing documentation and interviewing users.

· An effective data model completely and accurately represents the data requirements of the end users. It is simple enough to be understood by the end user yet detailed enough to be used by a database designer to build the database. The model eliminates redundant data, it is independent of any hardware and software constraints, and can be adapted to changing requirements with a minimum of effort.

· Data modelling is a bottom up process. A basic model, representing entities and relationships, is developed first. Then detail is added to the model by including information about attributes and business rules.

Components of a Data Model

The data model gets its inputs from the planning and analysis stage. Here the modeller, along with the analysts, collects information about the requirements of the database, by reviewing existing documentation and interviewing the end-users. The data model has two outputs:

· An Entity-Relationship diagram that represents the data structure(s) in a pictorial form.. As the diagram is easy to assimilate, employing simple notations and natural language, it is a valuable tool to communicate the model to the end-user.

· A Data Dictionary that describes in detail the data objects, relationships and rules required for the database, and conveys to the database developer how to construct the physical database.

Why is Data Modelling Important?

Data modelling is probably the most labour-intensive and time-consuming part of the development process. The why bother, if you are pressed for time? The near unanimous response from practitioners who write on the subject is that you would no more build a database without a data model, than you would build a house without an architect’s plan.

· The goal of the data model is to make sure that all the data objects required by the database are complete and accurately represented. As part of this process, it should be reviewed and verified as correct by the end-user.

· The data model should be sufficiently detailed as well to act as a blueprint for the database developers building the physical database. The information contained in the data model will be used to define the relational tables, the primary and foreign keys, the stored procedures and triggers.

· A poorly designed database will take far longer to develop to a working state. Without careful planning, you may create a database that omits data required to generate essential reports, produce results that are inaccurate and inconsistent, and cannot accommodate necessary changes in the user requirement.

 The Entity-Relationship (E-R) Model is the most appropriate and widely used technique for creating data models on which to build relational databases.

The E-R Model

The Entity-Relationship (E-R) model was first proposed by Peter Chen in 1976, as a way to unify network and relational database views. Simply stated, the E-R model is a conceptual model that views the real world as entities and relationships. A basic component of the model is the Entity-Relationship diagram, which is used to represent data objects visually. Since Chen wrote his paper, the model has been extended, and today it is widely used for database design.

For the database designer, the utility of the E-R model is that;

· It maps well to the relational model – The constructs used in the E-R model can be transformed easily into relational tables.

· It is simple and easy to understand with minimum training – The model can be used by the database analyst/designer to communicate the design to the end-user.

· It can be used as a generic design plan – The database developer can implement the data model in any specific database management software.

Identifying Data Objects and Relationships

In order to begin constructing the basic model, the modeller must analyse the information gathered during the requirements analysis for the purpose of:

· Classifying data objects as either entities or attributes

· Identifying and defining relationships between entities

· Naming and defining identified entities, attributes, and relationships

· Documenting this information in the data document

To accomplish these goals the modeller must analyse narratives from users, notes from meeting, policy and procedure documents, and, if lucky, design documents from the current information system.

Although it is easy to define the basic constructs of the E-R model, it is not an easy task to distinguish their roles in building the data model. What makes an object an entity or attribute? For example, given the statement "employees work on projects". Should employees be classified as an entity or attribute? Very often, the correct answer depends upon the requirements of the database. In some cases, employee would be an entity, in others it would be an attribute.

While the definitions of the constructs in the E-R Model are simple, the model does not address the fundamental issue of how to identify them. A simple guideline would be:

· Entities contain descriptive information

· Attributes either identify or describe entities

· Relationships are associations between entities

The Entity

Entities are the principal data objects and have been variously defined as:

· A thing, which can be distinctly identified
.

· Any distinguishable object that is to be represented in a database

· Anything about which we store information, e.g. supplier, machine tool, employee, utility pole, airline seat, etc. For each entity type, certain attributes are stored
.

· Any distinguishable person, place, thing, or concept, about which information is kept
.

These definitions contain common themes about entities:

· They are usually recognisable concepts, either concrete or abstract, such as persons, things or events, whose attributes need to be stored in the database. Some specific entities are EMPLOYEE, PROJECT, and INVOICE. An entity is analogous to a table in the relational model.

· Entities are classified as independent or dependent, and are known also as strong and weak respectively. An independent entity is one that does not rely on another for identification, while a dependent entity does rely on another for identification.

· An entity occurrence, or a single instance of an entity, is one member of an entity, and is analogous to a row in a table.

· Entities should not be used to distinguish between time periods. For example, the entities First-Quarter-Profits, Second-Quarter-Profits, etc. should be collapsed into a single entity called Profits. In general, entities and their relationships are analysed at one time, the length of time being determined by the nature of the real-world systems that contains them
.

· Not every thing the users want to collect information about will be an entity. A complex concept may require more than one entity to represent it. Other objects that users think important may not become data entities.
Special Entity Types

· Entities can sometimes represent the relationships between two or more objects. This type of entity is known as an associative entity or intersection entity. The associative entity is used to reconcile a many-to-many relationship between two or more entities
.

· An entity represents many things, which share properties. They are not single things. For example, King Lear and Hamlet are both plays, which share common attributes such as name, author, and cast of characters. The entity describing these things would be PLAY, with King Lear and Hamlet being instances of the entity. Entities that share common properties are candidates for being converted to generalization hierarchies. A sub-type entity is used to represent a subset of instances of a parent entity that itself is called a super-type, but the sub-type has attributes and relationships that apply only to its subset.

Associative entities and generalised hierarchies are discussed in more detail later.

Data Attribute

Attributes describe the entity with which they are associated.

· A particular instance of an attribute is known as a value. For example, Jane Hathaway is one value of the attribute name.

· The domain of an attribute is the collection of all possible values of an attribute. In its simplest definition, the domain of name is a character-string.

· Attributes can be classified as identifiers or descriptors. Identifiers, more commonly known as keys, uniquely identify an instance of an entity. A descriptor is a non-unique characteristic of an instance of an entity.

Attribute values should be atomic, that is, present a single fact. Having disaggregated data allows simpler programming, greater reusability of data, and easier implementation of changes. Common types of violations include:

· Simple aggregation - common examples are Name, which concatenates title, initials and surname, and Address, which concatenates, street address, town and post-code. When dealing with such attributes, you need to find out if there are good reasons for decomposing them. For example, do the end-users want to use the person's first name in a form letter? Do they want to sort by post-code?

· Complex codes - these are attributes whose values are codes composed of concatenated pieces of information. An example is the code attached to automobiles and trucks. The code represents over 10 different pieces of information about the vehicle. Unless part of an industry standard, these codes have no meaning to the end user. They are very difficult to process and update.

· Character-strings are free-form text fields. While they have a legitimate use, an over reliance on them may result in some data requirements not being met by the model.

· Mixed domains - this is where a value of an attribute can have different meaning under different conditions.

Derived Attributes

Two areas where data modelling experts disagree is whether derived attributes and attributes whose values are codes should be permitted in the data model.

Derived attributes are those created by a formula or by a summary operation on other attributes. Arguments against including derived data are based on the premise that derived data should not be stored in a database and therefore should not be included in the data model. The arguments in favour are:

· Derived data is often important to both managers and users and therefore should be included in the data model

· It is just as important, perhaps more so, to document derived attributes just as you would other attributes

· Including derived attributes in the data model does not imply how they will be implemented

A Coded Value uses one or more letters or numbers to represent a fact. For example, the value Gender might use the letters "M" and "F" as values rather than "Male" and "Female".

· Those who are against this practice cite that codes have no intuitive meaning to the end-users and add complexity to processing data.

· Those in favour argue that many organizations have a long history of using coded attributes, that codes save space, and improve flexibility in that values can be easily added or modified by means of look-up tables.

Relationships

A relationship represents an association between two or more entities. An example would be:

Employees are assigned to projects

Projects have sub-tasks

Departments manage one or more projects

Relationships are classified in terms of degree, connectivity, cardinality and existence, which are all explained more fully below. Not all analysis (modelling) methods use all these classifications.

Degree of a Relationship

The degree of a relationship is the number of entities associated with the relationship. Binary and ternary relationships are ones where the degree is 2 and 3 respectively, while the n-ary relationship is the general form for degree n.

· The most common form of relationship in the real-world is a binary one between two entities.

· A recursive binary relationship occurs when an entity is related to itself, or rather different instances of an entity are related. An example would be, some employees are married to other employees.

· A ternary relationship between three entities is used when a binary relationship proves inadequate.

· Many modelling techniques recognise only binary relationships. It is necessary for ternary and n-ary relationships to be decomposed into two or more binary relationships.

The connectivity and cardinality of a relationship

The connectivity of a relationship describes the mapping of associated entity instances in a relationship. The cardinality of a relationship is the actual number of related occurrences for each of the two entities. But the values of connectivity are just one or many. Thus connectivity can be one-to-one, one-to-many, and many-to-many.

· A one-to-one (1:1) relationship is when only one instance of A is associated with just one instance of B. For example, company employees are each assigned their own office:.

	
	For each employee there exists just one office
	
	for each office there exists just one employee

· A one-to-many (1:N) relationship is when for one instance of entity A there are zero, one or many instances of entity B, but for one instance of B there is only one instance of A. For example;

	
	A department has many employees
	
	Each employee is assigned to one department

· A many-to-many (N:M) relationship, sometimes called non-specific, is when for one instance of entity A there are zero, one or many instances of entity B, but for one instance of B there are zero, one or many instances of entity A. For example;

	
	Employees can be assigned to no more than two projects at the same time
	
	Each project must have assigned at least three employees

The Direction of a relationship indicates the originating entity of a binary relationship.
· The entity that originates the relationship is called the parent entity, and the one that terminates the relationship is called the child entity.

· An identifying relationship is one in which the child entity is also a dependent entity. A non-identifying relationship is one in which both entities are independent.

The direction of a relationship is determined by its (degree of) connectivity:

· In a one-to-one, identifying relationship, the direction is from the independent entity to the dependent entity. But if both entities are independent, the direction in this non-identifying relationship is arbitrary.

· With one-to-many relationships, the entity at the one end of a relationship is the parent, and thus originates the direction of the relationship.

· With many-to-many relationships, the direction is arbitrary.

The Existence(s) in a relationship denotes whether the existence of an entity instance is dependent upon the existence of an instance of the other entity in the relationship.

· The existence of an entity in a relationship is defined as being either mandatory or optional.

· A mandatory existence is where an instance of an entity must always occur for it to be included in the relationship. In the statement, “every project must be managed by a single department”, the existence of project is mandatory.

· An optional existence is where an instance of an entity is not required for it to be included in the relationship. In the statement, “employees may be assigned to work on projects”, the existence of employees is optional.

E-R Notation

There is no one universal standard for representing data objects in E-R diagrams. Each modelling technique uses its own notation.
 The notation given here is from the UK Government standard, Structured System’s Analysis and Design Method (SSADM).

· Entities are represented by a rectangle with a label

· The label is the name of the Entity, and should be a singular noun.

· Relationships are represented by a straight line connecting two entities.

· The name of the relationship is written above the line, and should be/contain a verb.

· The cardinality of many is represented by the line ending in a crow’s foot. If the crow’s foot is omitted, the cardinality is one.

· The mandatory existence in a relationship is shown by a solid line, an optional existence by a dotted line.

· Relationships can be drawn in the horizontal or vertical plane. If drawn in the vertical plane, the parent entity should appear above the child entity.

Summary – An entity model comprises;

	Entities,

Each by a rectangular box with label, representing a logical grouping of data that can be uniquely identified.

	

	
	

	Relationship

An occurrence of entity A is related to a single occurrence

	

	1:1 Relationship

One occurrence of entity A is related to a single occurrence of Entity B, and one occurrence of entity A is related to a single occurrence of entity B.
	

As a general rule, SSADM discourages 1:1 relationships and recommends that the two entities are combined. This may be reasonable if the two entities share the same identifier but, if they do not, they should not be combined.

Merging the two entities would create a problem over what its identifier should be. If employee-number was chosen, then, when the employee leaves the company, the whole entity and its associated attributes are deleted, including the car descriptor attributes. It would be necessary first to set-up a new occurrence of the entity, assigning the car to its next employee. Similarly, if car registration was chosen as the merged identifier, the employee attributes would be “lost” whenever the car is disposed of, unless of course a new occurrence is first set-up re-assigning the employee to a replacement car.

If 1:1 relationships are to be retained, then a decision has to be made as to which is the parent and child respectively. The selection of the parent entity should be based on the one whose occurrence is more permanent, - retained longer -, or is recorded earlier in time. In this example, the Employee should be the most reasonable choice, but possibly not in this volatile employment market!

	1:n Relationship

One occurrence of entity A is related to many occurrences of entity B, and one occurrence of entity B is related to a single occurrence of Entity B.
	

A Customer can place many orders, but each Order is related to one specific customer.

	M:n Relationship

One occurrence of entity A is related to many occurrences of entity B, and one occurrence of entity B is related to a many occurrences of Entity B.
	

An employee can work on many projects, while a project can have many employees working on it.

Many-to-many relationships are discouraged, as it is not possible to be definitive about which and how many projects an employee is associated with, and similarly, which and how many employees are associated with a particular project.

To resolve this problem, many-to-many relationships are decomposed into two new relationships by defining an associative or link entity.

	Decomposing an m:n Relationship into 1:n Relationships

The employee attributes, employee- no, name, address, etc, are held in entity Employee.

The project attributes, project-no, title, estimate completion date, employees required, etc. are held in entity Project.

The attributes describing a single employee working on a single project, task-no, start-date, end-date, etc., along with the identifier attributes employee-no, project-no are held in the associative entity Project-Employee.

	
[image: image1]

Object Definition

Complete and accurate definitions are important to make sure that all parties involved in the modelling of the data know exactly what concepts the objects are representing.

· Definitions should use terms familiar to the user and should precisely explain what the object represents and the role it plays in the enterprise. Some authors recommend having the end-users provide the definitions. If acronyms, or terms not universally understood are used in the definition, then these should be defined.

· While defining objects, the modeller should be careful to resolve any instances where a single entity is actually representing two different concepts (homonyms) or where two different entities are actually representing the same "thing" (synonyms). This situation typically arises because individuals or organizations may think about an event or process in terms of their own function.

· An example of a homonym would be a case where the Marketing Department defines the entity MARKET in terms of geographical regions while the Sales Departments thinks of this entity in terms of demographics. Unless resolved, the result would be an entity with two different meanings and properties.

· Conversely, an example of a synonym would be the Service Department may have identified an entity called CUSTOMER while the Help Desk has identified the entity CONTACT. In reality, they may mean the same thing, a person who contacts or calls the organization for assistance with a problem. The resolution of synonyms is important in order to avoid redundancy and to avoid possible consistency or integrity problems.

Some examples of definitions are:

	Employee

	A person who works for and is paid by the organization.

	Est-Time
	The number of hours a project manager estimates that project will require to be completed. Estimated time is critical for scheduling a project and for tracking project time variances.

	Assigned
	Employees in the organization may be assigned to work on no more than three projects at a time. Every project will have at least two employees assigned to it at any given time.

Recording Information in Design Documentation

The Data Dictionary records detailed information about each object used in the model. As you name, define, and describe objects, this information should be placed in this document. If you are not using an automated design tool, the document can be done on paper or with a word processor. This design control document should include information about names, definitions, and, for attributes, domains.

Two documents used in the IDEF1X method of modelling are useful for keeping track of objects. These are the Entity-Entity (E-E) Matrix and the Entity-Attribute Matrix – known clumsily in SSADM as the Composite Logic Data Design (CLDD) table.

The E-E Matrix is a two-dimensional array for indicating relationships between entities. The names of all identified entities are listed along both axes. As relationships are first identified, an "X" is placed in the intersecting points where any of the two axes meet to indicate a possible relationship between the entities involved. As the relationship is further classified, the "X" is replaced with the notation indicating cardinality, i.e. 1:1, 1:n, and m:n.

	Entity

Entity
	Employee

	Project
	Sub-Task
	Skill
	
	
	
	
	

	Employee

	
	n:m
	
	
	
	
	
	
	

	Project

	m:n
	
	1:n
	m:n
	
	
	
	
	

	Sub-Task

	
	n:1
	
	
	
	
	
	
	

	Skill

	
	n:m
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

The E-A Matrix or CLDD is used to indicate the assignment of attributes to entities.

	Data

Entity
	Data Attribute

	
	Name
	Type
	Size
	Index

	Employee
	Emp-ID
	Number
	Integer
	Primary

	
	Emp-Name
	Text
	40
	

	
	Emp-Title
	Text
	5
	

	
	Skill-ID
	Number
	Integer
	Foreign

	
	
	
	
	

	Project
	Project-ID
	Number
	Integer
	Primary

	
	Project-Name
	Text
	35
	

	
	
	
	
	

	Sub-Task
	Task-ID
	Number
	Integer
	Primary

	
	Task-Name
	Text
	50
	

	
	
	
	
	

	Skill
	Skill-ID
	Number
	Integer
	Primary

	
	Skill-Type
	Text
	25
	

Developing the Basic Schema

Once entities and relationships have been identified and defined, the first draft of the entity relationship diagram can be created. Here we demonstrate how to diagram binary relationships. Recursive relationships are also shown.

Examples of Binary Relationships

One-To-One Relationship

	

This figure shows an example of a one-to-one relationship.

· Reading the diagram from left to right represents the relationship Every employee is assigned a workstation. As every employee must have a workstation, the symbol for a mandatory existence, the solid line, emerges from the EMPLOYEE entity and only half-way to the WORKSTATION entity.

· Reading from right-to-left, the dotted line emerging to halfway from the WORKSTATION entity indicates an optional existence, in that not all the workstations are assigned to employees. This condition may reflect that some workstations are kept for spares or for loans.

· The cardinality and existence of a relationship must be derived from the "business rules" of the organisation. For example, if all workstations owned by an organisation were assigned to employees, then the dotted line would be replaced by a solid line to indicate a mandatory existence.

· One-to-one relationships are rarely seen in "real-world" data models. Some practitioners would advise that most one-to-one relationships should be collapsed into a single entity or converted to a generalisation hierarchy.

One-To-Many Relationship

	

This shows an example of a one-to-many relationship between the data entities DEPARTMENT and PROJECT. DEPARTMENT is considered the parent entity while PROJECT is the child.

· Reading from left to right, the diagram shows that a department may be responsible for many projects. The optionality of the relationship reflects the "business rule" that not all departments in the organisation will be responsible for managing projects.

· Reading from right to left, the diagram tells us that every project must be the responsibility of just one department.

Many-To-Many Relationship

	

This figure shows a many-to-many relationship between (the data entities) EMPLOYEE and PROJECT. An employee may be assigned to many projects; each project must have several to many employees.

· Note that the association between EMPLOYEE and PROJECT is optional because, at a given time, an employee may not be assigned to a project.

· However, the relationship between PROJECT and EMPLOYEE is mandatory because a project must have at least two employees assigned.

Many-To-Many relationships can be used in the initial draft of the model but eventually must be transformed into two one-to-many relationships. The transformation is required because many-to-many relationships cannot be represented in the relational model.

Recursive relationship

	

A recursive relationship is where an entity is associated with itself. Here, we see:

An employee may manage many employees,

Each employee has to be managed by another employee.

The E-R diagram provides a pictorial representation of the major data objects, the entities, and the relationships between them. Once the basic diagram is completed, the next step is to refine the E-R diagram

Refining the Entity Model

Entities Must Participate In Relationships

Entities cannot be modelled unrelated to any other entity. Otherwise, when the model was transformed to the relational model, there would be no way to navigate to that table. The exception to this rule is a database with a single table.

Resolve Many-To-Many Relationships

Many-to-many relationships cannot be used in the data model because they cannot be represented by the relational model. Therefore, many-to-many relationships must be resolved early in the modelling process. The strategy for resolving many-to-many relationship is to replace the relationship with an associative entity and then relate the two original entities to the associative entity. This strategy was demonstrated in section 2 for the PROJECT – EMPLOYEE relationship.

Transform Complex Relationships into Binary Relationships

Complex relationships are classified as ternary, an association among three entities, or n-ary, an association among more than three, where n is the number of entities involved. For example, this shows the (ternary) relationship between three entities:

	

· Employees can use different skills on any one or more projects.

· Each project uses many employees with various skills.

Complex relationships cannot be directly implemented in the relational model so they should be resolved early in the modelling process. The strategy for resolving complex relationships is similar to resolving many-to-many relationships. The complex relationship replaced by an association entity and the original entities are related to this new entity related through binary relationships to each of the original entities.

	

Eliminate redundant relationships

A redundant relationship is a relationship between two entities that is equivalent in meaning to another relationship between those same two entities that may pass through an intermediate entity.

For example, the Figure below on the left shows a redundant relationship between DEPARTMENT and WORKSTATION. This relationship provides the same information as do the inter-linked relationships between DEPARTMENT tasking EMPLOYEE, and EMPLOYEE allocated to WORKSTATION.

The Figure over-page shows the solution which is to remove the redundant relationship DEPARTMENT Assigns WORKSTATIONS.

	Unresolved redundant relationship
	Redundant relationship removed

	

	

Summary

The last two sections have provided a brief overview of the basic constructs in the E-R diagram. The next section discusses primary and foreign keys.

Primary and Foreign Keys

Introduction

Primary and foreign keys are the most basic components on which relational theory is based. Primary keys enforce entity integrity by uniquely identifying entity instances. Foreign keys enforce referential integrity by completing an association between two entities. The next step in building the basic data model to

· Identify and define the primary key attributes for each entity

· Validate primary keys and relationships

· Migrate the primary keys to establish foreign keys

Define Primary Key Attributes

Attributes are data items that describe an entity. An attribute instance is a single value of an attribute for an instance of an entity. For example, Name and hire date are attributes of the entity EMPLOYEE. "Jane Hathaway" and "3 March 1989" are instances of the attributes name and hire date.

The primary key is an attribute or a set of attributes that uniquely identify a specific instance of an entity. Every entity in the data model must have a primary key whose values uniquely identify instances of the entity.

To qualify as a primary key for an entity, an attribute must have the following properties:

· It must have a non-null value for each instance of the entity

· The value must be unique for each instance of an entity.

· The values must not change or become null during the life of each entity instance

In some instances, an entity will have more than one attribute that can serve as a primary key. Any key or minimum set of keys that could be a primary key is called a candidate key.

· Once candidate keys are identified, choose one, and only one, the Primary key for each entity.

· Choose the identifier that is most commonly used by the user, as long as it conforms to the properties listed above.

· Candidate keys not chosen as the primary key are known as Alternate keys.

An example of an entity that could have several possible primary keys is Employee. Let's assume that for each employee in an organisation there are three candidate keys: Employee ID, Social Security Number, and Name.

· Name is the least desirable candidate. While it might work for a small department where it is unlikely that two people would have exactly the same name, it would not work for a large organisation that had hundreds or thousands of employees. Moreover, there is the possibility that an employee's name could change because of marriage.

· Employee ID would be a good choice as long as each employee was assigned a unique identifier at the time of hire. The strength of this choice is that the organisation itself controls the issue and, if necessary, modification of Employee ID’s.

· Social Security Number would be another good choice, since every employee is required to have one by law before being hired. It would fit in, e.g. with the payment of salaries, regarding tax deductions and national insurance contributions.

Simple Keys

Simple keys consist of a single data item

e.g.
For the Member of an organisation

Membership No

Compound Keys

Compound keys consist of two or more data items. Each part of the compound key has some independent meaning in the system and is likely to be the simple candidate key of another relation.

e.g.
For the Supplier of Publications

ISBN

Supplier Number

Composite Keys

A composite key is the other form of multiple primary key, but here part of the key is not unique in itself, i.e. it is not a simple candidate key in its own right.

e.g.
For the items that form part of an order.

Order No
Order Number is the unique primary key for the ORDER entity

Item No
Item No is unique only within a specific order, could appear in other orders, therefore cannot be a primary key in its own right.
Artificial Keys

An artificial key is one that has no meaning to the business or organisation. Artificial keys are permitted when

No single attribute has all the primary key properties, or

The primary key would otherwise be large and complex.

Primary Key Migration

Dependent entities, entities that depend on the existence of another entity for their identification, inherit the entire primary key from the parent entity. Every entity within a generalisation hierarchy inherits the primary key of the root generic entity.

Define Key Attributes

Once the keys have been identified for the model, it is time to name and define the attributes that have been used as keys.

There is no standard method for representing primary keys in ER diagrams. For this document, the primary key employee no is identified as bold/underline. The Foreign key, Department Code is preceded by a ‘*’ for identification as shown below.

	

Validate Keys and Relationships

Basic rules governing the identification and migration of primary keys are:

· Every entity in the data model shall have a primary key whose values uniquely identify the instances of the entities.

· The primary key attribute cannot be optional (i.e., have null values).

· The primary key cannot have repeating values. That is, the attribute may not have more than one value at a time for a given entity instance is prohibited. This is known as the No Repeat Rule.

· Entities with compound primary keys cannot be split into multiple entities with simpler primary keys. This is called the Smallest Key Rule.

· Two entities may not have identical primary keys with the exception of entities within generalisation hierarchies.

· The entire primary key must migrate from parent entities to child entities and from super-type generic entities, to sub-types category entities (see generalised hierarchies from page 27).

Foreign Keys

A foreign key is an attribute that completes a relationship by identifying the parent entity. Foreign keys provide a method for maintaining integrity in the data (called referential integrity) and for navigating between different instances of an entity. Every relationship in the model has to be supported by a foreign key.

Identifying Foreign Keys

Every dependent and category (subtype) entity in the model must have a foreign key for each relationship in which it participates. Foreign keys are formed in dependent and sub-type entities by migrating the entire primary key from the parent or generic entity. If the primary key is composite, it may not be split.

Foreign Key Ownership

Foreign key attributes are not considered to be owned by the entities to which they migrate, because they are reflections of the attributes in their parent entities. Thus, each attribute in an entity is either owned by that entity or belongs to a foreign key in that entity.

If the primary key of a child entity contains all the attributes in a foreign key, the child entity is said to be "identifier dependent" on the parent entity, and the relationship is called an "identifying relationship." If any attributes in a foreign key do not belong to the child's primary key, the child is not identifier dependent on the parent, and the relationship is called "non identifying."

Diagramming Foreign Keys

Foreign keys attributes are indicated by an asterisk ‘*’ preceding them.

Summary

Primary and foreign keys are the most basic components on which relational theory is based. Each entity must have an attribute or attributes, the primary key, whose values uniquely identify each instance of the entity. Every child entity must have an attribute, the foreign key, which completes the association with the parent entity.

The next step in building the model is to add attributes to the model.

Add Attributes to the Model

Non-key attributes describe the entities to which they belong. In this section, we discuss the rules for assigning non-key attributes to entities and how to handle multi-valued attributes.

Relate Attributes to Entities

Non-key attributes can only be assigned to the one data entity. Unlike key attributes, non-key attributes never migrate, and can exist in just one entity.

The process of relating attributes to entities begins with the modeller, assisted by the end-users, in placing attributes with the entities they appear to describe. You should record your decisions in the CLDD table in the previous section. Once this is completed, the assignments are validated by the formal method of normalisation.

Before beginning formal normalisation, the rule is to place non-key attributes in entities where the value of the primary key determines the values of the attributes. In general, entities with the same primary key should be combined into one entity. Some other guidelines for relating attributes to entities are given below.

Parent-Child Relationships

· With parent-child relationships, place attributes in the parent entity where it makes sense to do so (as long as the attribute is dependent upon the primary key)

· If a parent entity has no non-key attributes, combine the parent and child entities.

Multi-valued Attributes

If an attribute is dependent upon the primary key but is multi-valued - has more than one value for a particular value of the key -, reclassify the attribute as a new child entity.

· If the multi-valued attribute is unique within the new entity, it becomes the primary key.

· If not, migrate the primary key from the original parent entity, to the child entity.

For example, with a PROJECT and its Attributes given below:

	Project-ID
	Project-Name
	Task-ID
	Task-Name

	01
	A
	01
	Analysis

	01
	A
	02
	Design

	01
	A
	03
	Programming

	01
	A
	04
	Tuning

	02
	B
	01
	Analysis

Task-ID and Task-Name have multiple values for the key attribute. The solution is to create a new entity, let's call it TASK and make it a child of PROJECT.

· Move Task-ID and Task-Name from PROJECT to TASK.

· Since neither attribute uniquely identifies a Task, the final step would be to migrate Project-ID to TASK. The combination of Project-ID and Task-ID is unique.

Attributes That Describe Relations

In some cases, it appears that an attribute describes a relationship rather than an entity. For example,

a MEMBER borrows BOOKS.

Possible attributes are the dates when the books were checked out and when they are due back.

· Typically, such a situation will occur with a many-to-many relationship and the solution is the same.

· Reclassify the relationship as a new (borrow) entity, which is a child to both original entities. In some methods, it is known as an associative entity.

Derived Attributes and Code Values

Two areas where data modelling experts disagree is whether derived attributes and attributes whose values are codes should be permitted in the data model.

Derived attributes are those created by a formula or by a summary operation on other attributes. Arguments against including derived data are based on the premise that derived data should not be stored in a database and therefore should not be included in the data model. The arguments in favour are:

· Derived data is often important to both managers and users and therefore should be included in the data model.

· It is just as important, perhaps more so, to document derived attributes just as you would other attributes

· Including derived attributes in the data model does not imply how they will be implemented.

A coded value uses one or more letters or numbers to represent a fact. For example, the value Gender might use the letters "M" and "F" as values rather than "Male" and "Female". Those who are against this practice cite that codes should have no intuitive meaning to the end-user and can add complexity to processing data. Those in favour argue that many organisations have a long history of using coded attributes, that codes save space, and improve flexibility in that values can be easily added or modified by means of look-up tables.

Including Attributes in the ER Diagram

There is disagreement about whether attributes should be part of the entity-relationship diagram.

· MS Access, for example, displays the attributes along with keys in its generated (table entity) Relationship view.

· Experienced practitioners consider that adding attributes, especially if there are a large number, clutters the diagram and detracts from its ability to present the end-user with an overview of how the data is structured.

Summary

By the end of this stage you should have:

· Identified, named, and defined data objects and relationships

· Recorded information about data objects and relationships in the data document

· Created and refined the ER diagram

· Assigned attributes to entities

· Added attributes to ER diagram (optional)

Generalization Hierarchies

Up to this point, we have discussed describing an object, the entity, by its shared characteristics, the attributes. For example, we can characterize an employee by their identification, name, job title, and skill set.

Another method of characterising entities is by both similarities and differences. For example, suppose an organisation categorises the work it does into internal and external projects.

· Internal projects are done on behalf of some unit within the organisation. External projects are done for entities outside of the organisation. We can recognise that both types of projects are similar in that each involves work done by employees of the organisation within a given schedule.

· Yet we also recognise that there are differences between them. External projects have unique attributes, such as a customer identifier and the fee charged to the customer. This process of categorising entities by their similarities and differences is known as generalisation.

Description

A generalisation hierarchy is a structured grouping of entities that share common attributes. It is a powerful and widely used method for representing common characteristics among entities while preserving their differences. It is the relationship between an entity and one or more refined versions. The entity being refined is called the super-type and each refined version is called the sub-type.
Generalisation hierarchies should be used when:

· A large number of entities appear to be of the same type.

· Attributes are repeated for multiple entities.

· The model is continually evolving.

Generalisation hierarchies improve the stability of the model by allowing changes to be made only to those entities germane to the change and simplify the model by reducing the number of entities in the model.

Creating a Generalization Hierarchy

To construct a generalization hierarchy, all common attributes are assigned to the super-type.

· The super-type is assigned as well an attribute, called a discriminator, whose values identify the categories of the sub-types.

· Attributes unique to a category, are assigned to the appropriate sub-type.

· Each subtype also inherits the primary key of the super-type.

· Sub-types that comprise only a primary key should be eliminated.

· Sub-types are related to super-types in a one-to-one relationship.

Types of Hierarchies

A generalisation hierarchy can either be overlapping or disjoint.

· In an overlapping hierarchy, an entity instance can be part of multiple sub-types. For example, to represent people at a university, we have identified the super-type entity PERSON that has three subtypes, FACULTY, STAFF, and STUDENT. It is quite possible for an individual to be in more than one subtype, for example a staff member who is also registered as a student.

· In a disjoint hierarchy, an entity instance can be found only in one subtype. For example, the entity EMPLOYEE, may have two sub-types, CLASSIFIED and WAGES. An employee may be one type or the other but not both.

The primary rule of generalisation hierarchies is that each instance of the super-type entity must appear in at least one subtype; likewise, an instance of the sub-type must appear in the super-type.

· Sub-types can be a part of only one generalisation hierarchy. That is, a sub-type cannot be related to more than one super-type. However, generalisation hierarchies may be nested, by having the subtype of one hierarchy as the super-type for another.

· Sub-types may be the parent entity in a relationship but not the child. If this were allowed, the subtype would inherit two primary keys.

Summary

Generalisation hierarchies are a structure that enables the modeller to represent entities that share common characteristics but also have differences.

The next and final step in the modelling process is to add Data Integrity Rules.

Overview of the Relational Model

The relational model was formally introduced by Dr. Eddie (Ted) Codd in 1968. The model provides a simple, yet rigorously defined concept of how users perceive data.

· The relational model represents data in the form of two-dimension tables.

· Each table represents some real-world person, place, thing, or event about which information is collected.

· A relational database is a collection of two-dimensional tables.

· The organization of data into relational tables is known as the logical view of the database. That is, the form in which a relational database presents data to the user and the programmer.

· The way the database software physically stores the data on a computer disk system is called the internal view. The internal view differs from product to product and does not concern us here.

A basic understanding of the relational model is necessary to effectively use relational database software such as Oracle, Microsoft SQL Server, or even personal database systems such as Access or Fox, which are based on the relational model.

Presented here an informal introduction to relational concepts, especially as they relate to relational database design issues. It is not a complete description of relational theory.

This section discusses the concepts, - data structures, relationships, and data integrity-, which are the basis of the relational model.

· Data Structure and Terminology
· Notation
· Properties of Relational Tables
· Relationships and Keys
· Data Integrity

· Relational Data Manipulation

· Normalisation

· Advanced Normalisation

Data Structure and Terminology

In the relational model, a database is a collection of relational tables. A relational table is a flat file composed of a set of named columns and an arbitrary number of unnamed rows. The columns of the tables contain information about the table. The rows of the table represent occurrences of the "thing" represented by the table. A data value is stored in the intersection of a row and column. Each named column has a domain, which is the set of values that may appear in that column.

The figure here shows the relational tables for a simple bibliographic database that stores information about book title, authors, and publishers.

	
	
	
	
	
	
	
	

	
	A Relational Database
	

	
	
	
	
	
	
	
	

	
	AUTHOR
	
	
	
	
	

	
	author-id
	last-name
	first-name
	Address
	City
	state
	

	
	172-32-1176
	White
	Johnson
	10932 Bridge Street
	Menlo Park
	CA
	

	
	213-46-3915
	Green
	Marjorie
	309 63rd Street #411
	Oakland
	CA
	

	
	238-95-7766
	Carson
	Cheryl
	589 Darwin
	Berkeley
	CA
	

	
	267-11-2391
	O’Leary
	Michael
	22 Cleveland Avenue #14
	San Jose
	CA
	

	
	274-80-9391
	Straight
	Jean
	5420 College Avenue
	Oakland
	CA
	

	
	341-22-1782
	Smith
	Alexander
	10 Mississippi Drive
	Lawrence
	CA
	

	
	409-56-7008
	Bennet
	Abraham
	6223 Bateman Street
	Berkeley
	CA
	

	
	427-17-2819
	Dull
	Ann
	3410 Blonde Street
	Palo Alto
	CA
	

	
	472-27-2319
	Gringlossy
	Burt
	PO Box 792
	Covelo
	CA
	

	
	486-29-1786
	Locksley
	Charlene
	18 Broadway Avenue
	San Francisco
	CA
	

	
	
	
	
	
	
	
	

	
	
	TITLE
	
	
	
	
	

	
	
	title-id
	Title
	Type
	Price
	publisher-id
	

	
	
	BU1032
	Busy Executive Database Guide
	Business
	9.99
	1389
	

	
	
	BU1111
	Cooking with Computers
	Business
	1.95
	1389
	

	
	
	BU2075
	You can Combat Computer Stress
	Business
	2.99
	736
	

	
	
	BU7832
	Straight Talk about Computers
	Business
	9.99
	1385
	

	
	
	MC2222
	Silicon Valley Gastronomic Treat
	modern-cook
	9.99
	877
	

	
	
	MC3021
	The Gourmet Microwave
	modern-cook
	2.99
	877
	

	
	
	MC3026
	Psychology of Computer Cooking
	Undecided
	35.49
	877
	

	
	
	PC1035
	But Is It User Friendly ?
	pop-computing
	22.95
	1389
	

	
	
	PC8888
	Secrets of Silicon Valley Dolls
	pop-computing
	3.20
	1389
	

	
	
	PC9999
	Net Etiquette
	pop-computing
	3.45
	1389
	

	
	
	PC2091
	Is Anger the Enemy ?
	Psychology
	10.95
	736
	

	
	
	
	
	
	
	
	

	
	
	PUBLISHER
	
	AUTHOR-TITLE
	

	
	
	publisher-id
	publisher-name
	city
	
	author-id
	title-id
	

	
	
	736
	New Moon Books
	Boston
	
	172-32-1176
	PS3383
	

	
	
	877
	Binnet & Hardley
	Washington
	
	213-46-3915
	BU1032
	

	
	
	1389
	Algodata Infosystems
	Berkeley
	
	213-46-3915
	BU2075
	

	
	
	1622
	Five Lakes Publishing
	Chicago
	
	238-95-7766
	PC1039
	

	
	
	1706
	Ramona Publishers
	Dallas
	
	267-11-2391
	BU1113
	

	
	
	9901
	GGG&C
	Munchen
	
	267-11-2391
	TC7773
	

	
	
	9952
	Scootney Books
	New York
	
	274-80-9391
	BU7882
	

	
	
	9999
	Lucerne Publishing
	Paris
	
	409-56-7008
	BU1032
	

	
	
	
	
	
	427-17-2819
	PC8888
	

	
	
	
	
	
	472-27-2319
	TC7777
	

	
	
	
	
	
	
	
	

There are alternate names used to describe relational tables. Some manuals use the terms tables, fields, and records to describe relational tables, columns, and rows, respectively.

The formal literature tends to use the mathematical terms, such as relations, attributes, and tuples.

Summary of naming conventions (terminology)

	In This Document
	Formal Terms
	Typical Database Manuals

	Relational Table
	Relation
	Table

	Column
	Attribute
	Field

	Row
	Tuple
	Record

Relational Model Notation

Relational tables can be expressed concisely by eliminating the sample data and showing just the table name and the column names. For example,

	AUTHOR
	author-id, (author)last-name, (author)first-name, address, city, county, postcode

	TITLE
	title-id, title, type, retail-price, publisher-id

	PUBLISHER
	publisher-id, publisher-name, city

	AUTHOR_TITLE
	author-id, publisher-id

Properties of Relational Tables

Relational tables have six properties:

· Values are atomic.

· Column values are of the same kind.

· Each row is unique.
· The sequence of columns is insignificant.
· The sequence of rows is insignificant.
· Each column must have a unique name.

Values Are Atomic

This property implies that columns in a relational table are not repeating group or arrays. Such tables are referred to as being in the "first normal form" (1NF). The atomic value property of relational tables is important because it is one of the cornerstones of the relational model.

The key benefit of the one value property is that it simplifies data manipulation logic.

Column Values Are of the Same Kind

In relational terms this means that all values in a column come from the same domain. A domain is a set of values that a column may have. For example, a monthly-salary column contains only specific monthly salaries. It never contains other information such as comments, status flags, or even weekly salary.

This property simplifies data access because developers and users can be certain of the type of data contained in a given column. It also simplifies data validation. Because all values are from the same domain, the domain can be defined and enforced with the Data Definition Language (DDL) of the database software.

Each Row is Unique

This property ensures that no two rows in a relational table are identical; there is at least one column, or set of columns, the values of which uniquely identify each row in the table. Such columns are called primary keys and are discussed in more detail in Relationships and Keys.

This property guarantees that every row in a relational table is meaningful and that a specific row can be identified, by specifying the primary key value.

The Sequence of Columns is Insignificant

This property states that the ordering of the columns in the relational table has no meaning. Columns can be retrieved in any order and in various sequences. The benefit of this property is that it enables many users to share the same table without concern of how the table is organized. It also permits the physical structure of the database to change without affecting the relational tables.

The Sequence of Rows is Insignificant

This property is analogous the one above but applies to rows instead of columns. The main benefit is that the rows of a relational table can be retrieved in different order and sequences. Adding information to a relational table is simplified and does not affect existing queries.

Each Column Has a Unique Name

Because the sequence of columns is insignificant, columns must be referenced by name and not by position. In general, a column name need not be unique within an entire database but only within the table to which it belongs.

Relationships and Keys

A relationship is an association between two or more tables. Relationships are expressed in the data values of the primary and foreign keys.

A primary key is a column or columns in a table whose values uniquely identify each row in a table. A foreign key is a column or columns whose values are the same as the primary key of another table. You can think of a foreign key as a copy of primary key from another relational table. The relationship is made between two relational tables by matching the values of the foreign key in one table with the values of the primary key in another.

· Keys are fundamental to the concept of relational databases because they enable tables in the database to be related with each other.

· Navigation around a relational database depends on the ability of the primary key to unambiguously identify specific rows of a table.

· Navigating between tables requires that the foreign key is able to correctly and consistently reference the values of the primary keys of a related table.

For example, the figure on the next page shows how the keys in the relational tables are used to navigate from AUTHOR to TITLE to PUBLISHER.

· AUTHOR-TITLE is an all-key table, once known as a link-list table, that is used to link AUTHOR and TITLE.

· This relational table is required because AUTHOR and TITLE have a many-to-many relationship.

	
	
	
	
	
	
	
	

	
	Navigating Between tables Using Keys
	

	
	
	
	
	
	
	
	

	
	AUTHOR
	
	
	
	
	

	
	author-id PK
	author-lname
	author-fname
	address
	City
	state
	

	
	172-32-1176
	White
	Johnson
	10932 Bridge Street
	Menlo Park
	CA
	

	
	213-46-3915
	Green
	Marjorie
	309 63rd Street #411
	Oakland
	CA
	

	
	238-95-7766
	Carson
	Cheryl
	589 Darwin
	Berkeley
	CA
	

	
	267-11-2391
	O’Leary
	Michael
	22 Cleveland Avenue #14
	San Jose
	CA
	

	
	274-80-9391
	Straight
	Jean
	5420 College Avenue
	Oakland
	CA
	

	
	341-22-1782
	Smith
	Alexander
	10 Mississippi Drive
	Lawrence
	CA
	

	
	409-56-7008
	Bennet
	Abraham
	6223 Bateman Street
	Berkeley
	CA
	

	
	427-17-2819
	Dull
	Ann
	3410 Blonde Street
	Palo Alto
	CA
	

	
	472-27-2319
	Gringlossy
	Burt
	PO Box 792
	Covelo
	CA
	

	
	
	
	
	
	
	

	
	AUTHOR-TITLE
	
	
	
	
	

	
	author-id PK
	title-id FK
	
	
	
	
	

	
	172-32-1176
	PS3383
	
	
	PK = Primary Key column
	

	
	213-46-3915
	BU1032
	
	
	FK = Foreign Key column
	

	
	213-46-3915
	BU2075
	
	
	
	
	

	
	238-95-7766
	PC1039
	
	
	
	
	

	
	267-11-2391
	BU1113
	
	
	
	
	

	
	267-11-2391
	TC7773
	
	
	
	
	

	
	274-80-9391
	BU7882
	
	
	
	
	

	
	409-56-7008
	BU1032
	
	
	
	
	

	
	427-17-2819
	PC8888
	
	
	
	
	

	
	472-27-2319
	TC7777
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	TITLE
	
	
	
	
	

	
	
	title-id PK
	Title
	type
	Price
	Publisher-id FK
	

	
	
	BU1032
	Busy Executive Database Guide
	business
	9.99
	1389
	

	
	
	BU1111
	Cooking with Computers
	business
	1.95
	1389
	

	
	
	BU2075
	You can Combat Computer Stress
	business
	2.99
	736
	

	
	
	BU7832
	Straight Talk about Computers
	business
	9.99
	1385
	

	
	
	MC2222
	Silicon Valley Gastronomic Treat
	modern-cook
	9.99
	877
	

	
	
	MC3021
	The Gourmet Microwave
	modern-cook
	2.99
	877
	

	
	
	MC3026
	Psychology of Computer Cooking
	undecided
	35.49
	877
	

	
	
	PC1035
	But Is It User Friendly ?
	pop-computing
	22.95
	1389
	

	
	
	PC8888
	Secrets of Silicon Valley Dolls
	pop-computing
	3.20
	1389
	

	
	
	PC9999
	Net Etiquette
	pop-computing
	3.45
	1389
	

	
	
	PC2091
	Is Anger the Enemy ?
	psychology
	10.95
	736
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	PUBLISHER
	
	
	
	

	
	
	Publisher-id PK
	publisher-name
	city
	
	
	
	

	
	
	736
	New Moon Books
	Boston
	
	
	
	

	
	
	877
	Binnet & Hardley
	Washington
	
	
	
	

	
	
	1389
	Algodata Infosystems
	Berkeley
	
	
	
	

	
	
	1622
	Five Lakes Publishing
	Chicago
	
	
	
	

	
	
	1706
	Ramona Publishers
	Dallas
	
	
	
	

	
	
	9901
	GGG&C
	Munchen
	
	
	
	

	
	
	9952
	Scootney Books
	New York
	
	
	
	

	
	
	9999
	Lucerne Publishing
	Paris
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Relational Data Manipulation

Relational tables are sets. The rows of the tables can be considered as elements of the set. Operations that can be performed on sets can be done on relational tables. The eight relational operations are:

Union of A and B.

The union operation of two relational tables is formed by appending rows from one table with those of a second table to produce a third. Duplicate rows are eliminated. The notation for the union of Tables A and B is A UNION B.

The relational tables used in the union operation must be union compatible. Tables that are union compatible must have the same number of columns and corresponding columns must come from the same domain.

The Union Operator. Note that the duplicate row [1, A, 2] has been removed.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	A
	
	
	
	
	B
	
	
	
	
	A Union B
	
	
	
	
	
	

	
	K
	x
	Y
	
	
	k
	x
	Y
	
	
	k
	x
	y
	
	
	
	
	
	

	
	1
	A
	2
	
	
	1
	A
	2
	
	
	1
	A
	2
	
	
	
	
	
	

	
	2
	B
	4
	
	
	4
	D
	8
	
	
	2
	B
	4
	
	
	
	
	
	

	
	3
	C
	6
	
	
	5
	E
	10
	
	
	3
	C
	6
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	4
	D
	8
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	5
	E
	10
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Difference of A and B

The difference of two relational tables is a third that contains those rows that occur in the first table but not in the second. The Difference operation requires that the tables be union compatible. As with arithmetic, the order of subtraction matters.

The Difference Operator. Note, A - B is not the same as B - A.
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	A
	
	
	
	
	B
	
	
	
	
	A - B
	
	
	A - B
	

	
	k
	x
	Y
	
	
	k
	X
	Y
	
	
	k
	x
	y
	
	
	k
	x
	y
	

	
	1
	A
	2
	
	
	1
	A
	2
	
	
	2
	B
	4
	
	
	4
	D
	8
	

	
	2
	B
	4
	
	
	4
	D
	8
	
	
	3
	C
	6
	
	
	5
	E
	10
	

	
	3
	C
	6
	
	
	5
	E
	10
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Intersection of A and B

The intersection of two relational tables is a third table that only contains rows common to both. Both tables must be union compatible. The notation for the intersection of A and B is A [intersection] B = C, or A Intersect B.

 The Intersect Operator

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	A
	
	
	
	
	B
	
	
	
	
	A Intersect B
	
	
	
	
	
	

	
	k
	x
	Y
	
	
	K
	X
	Y
	
	
	k
	x
	y
	
	
	
	
	
	

	
	1
	A
	2
	
	
	1
	A
	2
	
	
	1
	A
	2
	
	
	
	
	
	

	
	2
	B
	4
	
	
	4
	D
	8
	
	
	
	
	
	
	
	
	
	
	

	
	3
	C
	6
	
	
	5
	E
	10
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Product of A and B

The product of two relational tables, also called the Cartesian Product, is the concatenation of every row in one table with every row in the second. The product of table A (having m rows) and table B (having n rows) is the table C (having m x n rows). The product is denoted as A x B or A Times B.

The Product Operator

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	A
	
	
	
	
	B
	
	
	
	
	A Times B
	
	
	
	
	
	

	
	K
	x
	Y
	
	
	K
	x
	Y
	
	
	ak
	ax
	ay
	bk
	bx
	by
	
	
	

	
	1
	A
	2
	
	
	1
	A
	2
	
	
	1
	A
	2
	1
	A
	2
	
	
	

	
	2
	B
	4
	
	
	4
	D
	8
	
	
	1
	A
	2
	4
	D
	8
	
	
	

	
	3
	C
	6
	
	
	5
	E
	10
	
	
	1
	A
	2
	5
	E
	10
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	2
	B
	4
	1
	A
	2
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	2
	B
	4
	4
	D
	8
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	2
	B
	4
	5
	E
	10
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	3
	C
	6
	1
	A
	2
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	3
	C
	6
	4
	D
	8
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	3
	C
	6
	5
	E
	10
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The product operation is by itself, not very useful. However, it is often used as an intermediate process in a Join.

Projection

The project operator retrieves a subset of columns from a table, removing duplicate rows from the result.

Selection

The select operator, sometimes called restrict to prevent confusion with the SQL SELECT command, retrieves subsets of rows from a relational table based on a value(s) in a column or columns.

Join

A join operation combines the product, selection, and, possibly, projection. The join operator horizontally combines (concatenates) data from one row of a table with rows from another or the same table when certain criteria are met. The criteria involve a relationship among the columns in the join relational table. If the join criterion is based on equality of column value, the result is called an equi-join. A natural join, is an equi-join with redundant columns removed.

Illustrated below is a join operation on Tables D and E, based on the equality of k in both tables.

· The first result is an equi-join. Note, there are two columns named k.

· The second result is a natural join with the redundant column removed.

The Join Operator

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	D
	
	
	
	
	E
	
	
	
	
	Equi-Join
	
	
	
	
	
	

	
	k
	x
	Y
	
	
	k
	z
	
	
	
	k
	x
	y
	k
	z
	
	
	
	

	
	1
	A
	2
	
	
	1
	20
	
	
	
	1
	A
	2
	1
	A
	
	
	
	

	
	2
	B
	4
	
	
	4
	24
	
	
	
	4
	A
	2
	4
	D
	
	
	
	

	
	3
	C
	6
	
	
	5
	28
	
	
	
	5
	A
	2
	5
	E
	
	
	
	

	
	4
	D
	8
	
	
	7
	32
	
	
	
	2
	B
	4
	1
	A
	
	
	
	

	
	5
	E
	10
	
	
	9
	35
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	Natural Join
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	k
	x
	y
	z
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	1
	A
	2
	20
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	4
	D
	8
	24
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	5
	E
	10
	28
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Joins can also be done on criteria other than equality.

Division

The division operator results in columns values in one table for which there are other matching column values corresponding to every row in another table.

The Division Operator

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	A
	
	
	
	
	B Divisor
	
	
	
	Result
	
	
	
	
	
	

	
	k
	x
	Y
	
	
	x
	Y
	
	
	
	k
	
	
	
	
	
	

	
	10
	1101
	A
	
	
	A
	2
	
	
	
	10
	
	
	
	
	
	

	
	10
	1201
	B
	
	
	D
	8
	
	
	
	30
	
	
	
	
	
	

	
	10
	1301
	C
	
	
	E
	10
	
	
	
	
	
	
	
	
	
	
	
	

	
	20
	1201
	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	30
	1101
	A
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	30
	1201
	B
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	30
	1301
	C
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Normalisation

Normalization is a design technique that is widely used in designing relational databases. Normalization is essentially a two-step process that puts data into tabular form by removing repeating groups and then removes duplicated data from the relational tables.

· Normalization theory is based on the concepts of normal forms. A relational table is said to be a particular normal form if it satisfied a certain set of constraints.

· There are currently five normal forms that have been defined.

· In this section, we will cover the first three normal forms that were defined by Ted Codd in 1970.

Basic Concepts

The goal of normalization is to create a set of relational tables that are free of redundant data and that can be consistently and correctly modified. This means that all tables in a relational database should be in the third normal form (3NF).

A relational table is in 3NF, if and only if all non-key columns (attributes) are:

· Mutually independent

· Fully dependent upon the primary key.

Mutual independence means that no non-key column is dependent upon any combination of the other columns. The first two normal forms are intermediate steps to achieve the goal of having all tables in 3NF.

In order to better understand the 2NF and higher forms, it is necessary to understand the concepts of functional dependencies and loss-less decomposition.

Functional Dependencies

The concept of functional dependencies is the basis for the first three normal forms. Column y of the relational table R is said to be functionally dependent upon column x in table R, if and only if each value in column x is associated with precisely one value in column y at any given time - x and y may be composite.

· Saying that column y is functionally dependent upon x is the same as saying the values of column x identify the values of column y.

· If column x is a primary key, then all columns in the relational table R must be functionally dependent upon x.

· A shorthand notation for describing a functional dependency is:

R.x —>; R.y

Such that in the relational table R, column x functionally determines (identifies) column y.

Full functional dependence applies to tables with composite keys.

· Column y in relational table R is fully functional on column x of R if it is functionally dependent on x and not functionally dependent upon any subset of x.

· Full functional dependence means that when a primary key is composite, i.e. is made up of two or more columns, then the other columns must be identified by the entire key and not just some of the columns that make up the key.

Overview

Simply stated, normalization is the process of removing redundant data from relational tables by decomposing (splitting) a relational table into smaller tables by projection.

· The goal is to have only primary keys on the left hand side of a functional dependency.

· In order to be correct, decomposition must be loss-less. That is, when the new tables are re-combined by a natural join to form the original table, they do not create any spurious or redundant data.

Sample Data

Data taken from Date 1990 is used to illustrate the process of normalization. A company obtains parts from a number of suppliers. Each supplier is located in one city. A city can have more than one supplier located there and each city has a status code associated with it. Each supplier may provide many parts. The company creates a simple relational table to store this information that can be expressed in relational notation as: FIRST (supplier#, status, city, part#, qty)

	where:
	PRIVATE
supplier#
	supplier identification number - the primary key

	
	status
	status code assigned to city

	
	City
	name of city where supplier is located

	
	part#
	Part number of part supplied

	
	Qty
	quantity of parts supplied to date

In order to uniquely associate quantity supplied (qty) with part (part#) and supplier (supplier#), a composite primary key composed of supplier# and part# is used.

First Normal Form (1NF)

By definition:

A relational table is in first normal form, if all values in the columns are atomic.

That is, each column does not contain repeating values.

The figure here shows the table FIRST in 1NF.

Although the table FIRST is in 1NF it does contain redundant data. For example, information about the supplier's location and the location's status has to be repeated for every part supplied.

Redundancy causes what are called update anomalies, which arise when information is inserted, deleted, or updated.

For example, the following anomalies could occur in FIRST with;

· Insert. The fact that a certain supplier (s5) is located in a particular city (Athens) cannot be added until they supply a part.

· Delete. If a row is deleted, then not only is the information about quantity and part lost but also the information about the supplier.

· Update. If supplier s1 moved from London to New York, then six rows would have to be updated with this new information.

Second Normal Form

The definition of second normal form states that tables with composite primary keys can be in 1NF but not in 2NF.

A relational table in 1NF, where every non-key column is fully dependent upon the primary key, is in second normal form (2NF) as well.

That is, every non-key column must be dependent upon the entire primary key.

The FIRST table above is in 1NF but not in 2NF because status and city are functionally dependent upon only on the column supplier# of the composite key supplier#.part#). This can be illustrated by listing the functional dependencies in the table:

	supplier#
	 city, status

	city
	 status

	supplier#, part#
	qty

The process for transforming a 1NF table to 2NF is:

· Identify any determinants other than the composite key, and the columns they determine.

· Create and name a new table for each determinant and the unique columns it determines.

· Move the determined columns from the original table to the new table. The determinate becomes the primary key of the new table.

· Delete the columns you just moved from the original table except for the determinate which will serve as a foreign key.

The original table may be renamed in order to maintain semantic meaning.

To transform the FIRST table into 2NF we move the columns supplier#, status and city to a new table SUPPLIER.

The column supplier# becomes the primary key of this new table. The results are shown here.

The rump of the FIRST table is now more appropriately named PARTS.

Tables in 2NF, but not yet in 3NF, may still contain modification anomalies. In the example of SUPPLIER above, they are:

· Insert. The fact that a particular city has a certain status, e.g. Rome with a status of 50, cannot be inserted until there is a supplier in the city.

· Delete. Deleting any row in SUPPLIER destroys the status information about the city as well as the association between supplier and city.

Third Normal Form

The third normal form requires that all columns (fields) in a relational table are dependent only upon the primary key. A more formal definition is:

A relational table in 2 NF is in third normal form (3NF), as well, if every non-key column is non-transitively dependent upon its primary key. In other words, all non-key attributes are functionally dependent only upon the primary key.

Table PARTS is already in 3NF. The one non-key column, qty, is fully dependent upon the whole primary key supplier#, part#.

Table SUPPLIER is in 2NF but not in 3NF because it contains a transitive dependency. A transitive dependency occurs when a non-key column that is a determinant of the primary key is the determinate of other non-key columns. The concept of a transitive dependency can be illustrated by showing the functional dependencies in the SUPPLIER table:

	SUPPLIER.supplier#
	SUPPLIER.status

	SUPPLIER.supplier#
	SUPPLIER.city

	SUPPLIER.city
	SUPPLIER.status

Note that SUPPLIER.status is determined by both the primary key, supplier#, and the non-key column, city.

The process of transforming a table into 3NF is:

· Identify any determinants, other the primary key, and the columns they determine.

· Create and name a new table for each determinant and the unique columns it determines.

· Move the determined columns from the original table to the new table. The determinate becomes the primary key of the new table.

· Delete the columns you just moved from the original table except for the determinate which will serve as a foreign key.

Again, the original 2NF table may be renamed to maintain semantic meaning.

To transform SUPPLIER into 3NF,

· We create a new table called CITY_STATUS and move the columns city and status into it.

· Status is deleted from the original table, city is left behind to serve as a foreign key to CITY_STATUS

SUPPLIER table is renamed SUPPLIER-CITY to reflect its new semantic meaning.

Putting the FIRST table into 3NF has created 3 tables, represented in pseudo-SQL as:

PARTS (supplier#, part#, qty)
Primary Key (supplier#, part#)
Foreign Key (supplier#) references SUPPLIER-CITY.supplier#

SUPPLIER-CITY(supplier#, city)
Primary Key (supplier#)
Foreign Key (city) references CITY-STATUS.city

CITY-STATUS (city, status)
Primary Key (city)

Advantages of Third Normal Form

The advantages of having relational tables in 3NF is that it eliminates redundant data, which in turn saves space and reduces manipulation anomalies. For example:

· Insert. Facts about the status of a city, such as Rome with a status of 50, can be added even though there is not supplier in that city. Likewise, facts about new suppliers can be added even though they have yet to supply parts.

· Delete. Information about parts supplied can be deleted without destroying information about a supplier or a city.

· Update. Changing the location of a supplier or the status of a city requires only one row to be modified.

Summary of Normalisation

Construct an input/output model of the document

This is an optional step. When analysing complex documents it can be helpful to first develop an Input/Output model showing the data content and structure of the document. This puts the data into logical groups and helps to identify the iterated or repeating groups of data - the first step to getting the data into 1st Normal Form.

List un-normalised (UNF) data
If an Input/Output model has been developed it is straightforward to list the un-normalised data and identify the level, - in the hierarchical structure of a document, - of iterated data.

Any data that can be calculated from other data items, e.g. totals that can be calculated (price*qty) are identified, as these will not be carried forward into 1st Normal Form.

Convert data to 1st Normal Form (1NF)

Remove repeating groups. A unique primary key is identified from the candidate key data for the first (level 1) group. Any repeating groups are removed into separate relations and are given the primary key of the first group plus their own unique primary key - making a compound key consisting of two or more data items depending on the level of the group.

Convert data to 2nd Normal Form (2NF)
 Remove part-key dependencies. Any data that is identified by only part of a compound key, rather than the key as a whole, is removed into a separate relation with its own primary key.

Convert data to 3rd Normal Form (3NF)
Remove inter-data dependencies. Any group of data that is identified by another data item rather than the primary key is removed into a separate relation. The identifying data becomes the primary key of the new relation, but is retained in the original table as a foreign key.

Identify relations (also known as entities or tables) and their attributes
Identify the relations by giving them a suitable name and listing their attributes.

Turn into a subset Logical Data Model
The relations can be shown as a Logical Data Structure mapping the relationships between entities by using the foreign and multiple-part compound keys.

 Normalisation Worked Example

Start. The UNNORMALISED Form (UNF)

	UNF
	1NF
	2NF
	3NF

	
	
	
	

	Order Number
	
	
	

	Customer Name
	
	
	

	Customer Number
	
	
	

	Date of Order
	
	
	

	Product No
	
	
	

	Description
	
	
	

	Quantity
	
	
	

	Unit Price
	
	
	

Step 1

· For the whole UNF, choose a unique identifier, the primary key Order Number.

· Identify any repeating groups and choose its unique identifier Product No

Choose a relation name ORDER

	UNF
	1NF
	2NF
	3NF

	ORDER
	
	
	

	Order Number
	
	
	

	Customer Name
	
	
	

	Customer Number
	
	
	

	Date of Order
	
	
	

	 Product No
	
	
	

	 Description
	
	
	

	 Quantity
	
	
	

	Unit Price
	
	
	

	
	
	
	

Step 2 – Remove repeated data to create new relation and name it.
The primary key of the parent relation is included in the new relation as part of the key.

	UNF
	1NF
	2NF
	3NF

	ORDER
	ORDER
	
	

	Order Number
	Order Number
	
	

	Customer Name
	Customer Name
	
	

	Customer Number
	Customer Number
	
	

	Date of Order
	Date of Order
	
	

	Product No
	
	
	

	Description
	ORDER-ITEM
	
	

	Quantity
	Order Number
	
	

	Unit Price
	Product No
	
	

	
	Description
	
	

	
	Quantity
	
	

	
	Unit Price
	
	

To choose a name for the new relation, it is worthwhile examining the key.

· In this case the new relation could have been called the ORDER/PRODUCT relation but I have chosen ORDER-ITEM as the name.

· The repeating fields are Product No, Description, Quantity and Unit Price.

· The primary key of the new ORDER ITEM relation is a compound one: Order Number. Product Number
Step 3 - Remove any part-key dependencies
Examine any relations that have a composite or compound key.

· Check all non-key attributes to ensure each attribute is dependent on all parts of the composite/compound key.

· If any non-key attributes are only dependent on part of the key then a new relation is created for the part-key and any depending attributes.

	UNF
	1NF
	2NF
	3NF

	ORDER
	ORDER
	ORDER
	

	Order Number
	Order Number
	Order Number
	

	Customer Name
	Customer Name
	Customer Name
	

	Customer Number
	Customer Number
	Customer Number
	

	Date of Order
	Date of Order
	Date of Order
	

	Product No
	
	
	

	Description
	ORDER-ITEM
	ORDER-ITEM
	

	Quantity
	Order Number
	Order Number
	

	Unit Price
	Product No
	Product No
	

	
	Description
	Quantity
	

	
	Quantity
	
	

	
	Unit Price
	PRODUCT
	

	
	
	Product No
	

	
	
	Description
	

	
	
	Unit Price
	

When we examine the attributes Description and Unit Price, we can see that these attributes are solely dependent on Product Number. For any other order for that particular order these attributes would remain the same. However the attribute Quantity is the quantity of a product for that order. It is not the quantity of the order or the quantity of the product.

Step 4 - Remove inter-data dependencies

At this point we only examine non-key attributes to determine if there is any intrinsic relationship irrespective of the key.

· If there is then a new relation is created with the depending key as the prime key and any dependent attributes associated with this key.

· The depending key is retained in the original relation but highlighted with a * to indicate a foreign key.

	UNF
	1NF
	2NF
	3NF

	ORDER
	ORDER
	ORDER
	ORDER

	Order Number
	Order Number
	Order Number
	Order Number

	Customer Name
	Customer Name
	Customer Name
	* Customer Number

	Customer Number
	Customer Number
	Customer Number
	Date of Order

	Date of Order
	Date of Order
	Date of Order
	

	Product No
	
	
	CUSTOMER

	Description
	ORDER-ITEM
	ORDER-ITEM
	Customer Number

	Quantity
	Order Number
	Order Number
	Customer Name

	Unit Price
	Product No
	Product No
	

	
	Description
	Quantity
	ORDER-ITEM

	
	Quantity
	
	Order Number

	
	Unit Price
	PRODUCT
	Product No

	
	
	Product No
	Quantity

	
	
	Description
	

	
	
	Unit Price
	PRODUCT

	
	
	
	Product No

	
	
	
	Description

	
	
	
	Unit Price

In this example, in the ORDER relation Customer Name is dependent on Customer Number, irrespective of which order, and hence Order Number, this particular customer makes.

Advanced Normalization

After 3NF, further normalization involves only relational tables that have three or more columns, and all the columns are keys. Many practitioners argue that placing relations in 3NF is generally sufficient.

· It is rare for relations in 3NF not to be also in 4NF and 5NF.

· The benefits gained from transforming relations into 4NF and 5NF are so slight that it is not worth the effort.

However, advanced normal forms are presented here, because there are cases when they are required.

Boyce-Codd Normal Form

Boyce-Codd normal form (BCNF) is a more rigorous version of the 3NF deal for relational tables that have:

· Multiple candidate keys

· Composite candidate keys

· Candidate keys that overlap.

BCNF is based on the concept of determinants. A determinant column is one in which some of the columns are fully functionally dependent.

A relational table is in BCNF if, and only if, every determinant is a candidate key.

Fourth Normal Form

Fourth normal form (4NF) is based on the concept of multi-valued dependencies (MVD).

A relational table is in the fourth normal form (4NF) if it is in BCNF and all multi-valued dependencies are also functional dependencies.

A multi-valued dependency occurs when in a relational table containing at least three columns, one column has multiple rows whose values match a value of a single row of one of the other columns.

A more formal definition by Date is:

For a relational table R, with columns A, B, and C, then the condition

R.A >> R.B, - i.e. column A multi-determines column B -, is true

If, and only if, the set of B-values matches a given pair of A-values,

and the C-values in R depends only on the A-value, i.e. are independent of the C-value.

MVD always occur in pairs. That is;

R.A —>> R.B holds true,

If, and only if, R.A —>> R.C also holds true.

Example of 4NF

Suppose that employees can be assigned to multiple projects. Employees can have, as well, multiple job skills. If we record this information in a single table, all three attributes must be used as the key, since no single attribute can uniquely identify an instance.

· The relationship between employee# and project# is a multi-valued dependency because for each pair of employee#,skill values in the table, the associated set of project# values is determined only by employee#, and is independent of skill.

· The relationship between employee# and skill is also a multi-valued dependency, since for each pair of employee#,project# values in the table, the associate set of skills values is dependent upon employee#, and is independent of project#.

To transform a table with multi-valued dependencies into 4NF, move each MVD pair to a new table.

The result is as shown here.

Fifth Normal Form

While the first four normal forms are based on the concept of functional dependence, the fifth normal form (5NF) is based on the concept of join dependence.

A table is in the fifth normal form (5NF) if it cannot have a loss-less decomposition into any number of smaller tables.

Join dependency means that a table, after it has been decomposed into three or more smaller tables, must be capable of being rejoined again on common keys to form the original table. Stated another way, 5NF indicates when an entity cannot be further decomposed.

5NF is complex and not intuitive. Most experts agree that tables that are in the 4NF are also in 5NF, except for pathological cases. Teorey suggests that true many-to-many-to-many ternary relations are one such case.

Adding an instance to a table that is not in 5NF creates spurious results when the table is decomposed and then rejoined.

Example of 5NF

Let's suppose we have an employee who uses design skills on one project and programming skills on another. This information is shown below.

	
	
	
	
	

	
	employee#
	project#
	skill
	

	
	1211
	11
	Design
	

	
	1211
	28
	Program
	

	
	
	
	
	

Next we add an employee 1544, who uses program skills, on project 11.

	
	
	
	
	

	
	employee#
	project#
	skill
	

	
	1211
	11
	Design
	

	
	1211
	28
	program
	

	
	1544
	11
	program
	

	
	
	
	
	

Then, we transform this information into three tables, as we did before.

However, when we re-join the tables, we find that the recombined table contains spurious results.

	
	
	
	
	

	
	PRIVATE
employee#
	project#
	Skill
	

	
	1211
	11
	Design
	

	
	1211
	11
	Program
	 spurious data

	
	1211
	28
	Program
	

	
	1544
	11
	Design
	spurious data

	
	1544
	11
	Program
	

	
	
	
	
	

By adding one new instance to a table that is not in 5NF, two false assertions were stated:

False Assertion 1
· Employee 1211 has been assigned to project 11.

· Project 11 requires program skills.

· Therefore, employee 1211 must use program skills while assigned to project 11.

False Assertion 2

· Employee 1544 has been assigned to project 11.

· Project 11 needs design skills.

· Therefore, employee 1544 must use design skills in project 11.

WORKSTATION

PROJECT

DEPARTMENT

EMPLOYEE

EMPLOYEE

EMPLOYEE

WORKSTATION

Allocated to

Assigns

PROJECT

EMPLOYEE

SKILL

PROJECT EMPLOYEE SKILL

SKILL

EMPLOYEE

PROJECT

Tasks

�
SUPPLIER-CITY�
�
CITY-STATUS�
�
PARTS�
�
�
�
�
�
supplier#�
city�
�
city�
Status�
�
supplier#�
part#�
qty�
�
�
�
s1�
London�
�
London�
20�
�
s1�
p1�
300�
�
�
�
s2�
Paris�
�
Paris�
10�
�
s1�
p2�
200�
�
�
�
s3�
Paris�
�
Athens�
30�
�
s1�
p3�
400�
�
�
�
s4�
London�
�
Rome�
50�
�
s1�
p4�
200�
�
�
�
s5�
Athens�
�
�
�
�
s1�
p5�
100�
�
�
�
�
�
�
�
�
�
s1�
p6�
100�
�
�
�
�
�
�
�
�
�
s2�
p1�
300�
�
�
�
�
�
�
�
�
�
s2�
p2�
400�
�
�
�
�
�
�
�
�
�
s3�
p2�
200�
�
�
�
�
�
�
�
�
�
s4�
p2�
200�
�
�
�
�
�
�
�
�
�
s4�
p4�
300�
�
�
�
�
�
�
�
�
�
s4�
p5�
400�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
SUPPLIER�
�
�
PARTS�
�
�
�
�
�
supplier#�
status�
city�
�
supplier#�
part#�
qty�
�
�
�
s1�
20�
London�
�
s1�
p1�
300�
�
�
�
s2�
10�
Paris�
�
s1�
p2�
200�
�
�
�
s3�
10�
Paris�
�
s1�
p3�
400�
�
�
�
s4�
20�
London�
�
s1�
p4�
200�
�
�
�
s5�
30�
Athens�
�
s1�
p5�
100�
�
�
�
�
�
�
�
s1�
p6�
100�
�
�
�
�
�
�
�
s2�
p1�
300�
�
�
�
�
�
�
�
s2�
p2�
400�
�
�
�
�
�
�
�
s3�
p2�
200�
�
�
�
�
�
�
�
s4�
p2�
200�
�
�
�
�
�
�
�
s4�
p4�
300�
�
�
�
�
�
�
�
s4�
p5�
400�
�
�
�
�
�
�
�
�
�
�
�
�

�
FIRST�
�
�
�
�
�
�
�
supplier#�
status�
city�
part#�
qty�
�
�
�
s1�
20�
London�
p1�
300�
�
�
�
s1�
20�
London�
p2�
200�
�
�
�
s1�
20�
London�
p3�
400�
�
�
�
s1�
20�
London�
p4�
200�
�
�
�
s1�
20�
London�
p5�
100�
�
�
�
s1�
20�
London�
p6�
100�
�
�
�
s2�
10�
Paris�
p1�
300�
�
�
�
s2�
10�
Paris�
p2�
400�
�
�
�
s3�
10�
Paris�
p2�
200�
�
�
�
s4�
20�
London�
p2�
200�
�
�
�
s4�
20�
London�
p4�
300�
�
�
�
s4�
20�
London�
p5�
400�
�
�
�
�
�
�
�
�
�
�

must employ several

may be assigned to several

must be responsibility of one dept

may be responsible for many projects

EMPLOYEE

Employee No

Employee Name

D.O.B

Employee Address

*Department Code

Physical Database Design

Order Form

Order Number : 0206001					Date of Order : 12/06/02

Customer Name : John Smith

Customer Number : Sup056

Product No�
Description�
Quantity�
Unit Price�
Value�
�
W034�
Wheelbarrow�
10�
£9.99�
£99.99�
�
H024�
Garden Hoe�
5�
£4.25�
£21.25�
�
SP003�
Spade�
8�
£7.99�
£63.92�
�
�
�
�
�
�
�
�
�
�
�
£185.16�
�

EMPLOYEE

PROJECT

may be supervisor of many

is supervised by one

DEPARTMENT

DEPARTMENT

Tasks

Allocated to

WORKSTATION

EMPLOYEE

Implementation

Logical Data Modelling

Data Conversion/Loading

Conceptual Data Modelling

Requirements

Testing

System Definition

DBMS Selection

Application Design

Prototyping

Maintenance

Database Development Lifecycle Model

Database design is defined as the development of the logical and physical structure of one or more databases that can accommodate the information needs of the users in an organisation for a defined set of applications.

The design process roughly follows these five steps:

planning and analysis

conceptual design

logical design

physical design

implementation

The data model is one part of the conceptual process. The other, typically, is the functional model.

The data model focuses on what data should be stored in the database, while the functional model deals with how the data is to be processed.

To put this simplistically in the context of relational databases,

The data model is used to design the relational tables

The functional model is used to design the queries that will access and perform operations on the tables.

Customer

places

Customer

Order

assigned exclusively to

Employee

Company Car

places

Customer

Order

can work on

Employee

Project

Project-Employee

Employee

Project

�
�
�
�
�
�
�
�
EMPLOYEE-PROJECT�
�
EMPLOYEE-SKILL�
�
�
�
employee#�
project#�
�
�
employee’#�
skill�
�
�
�
1211�
1�
�
�
1211�
Analysis�
�
�
�
1211�
5�
�
�
1211�
Design�
�
�
�
�
�
�
�
1211�
Program�
�
�
�
�
�
�
�
�
�
�
�

�

Person

Student

Staff

Faculty

Classified

Wages

Employee

Over-Lapping Hierarchy

Disjointed Hierarchy

Database Planning

EMPLOYEE

� P.P. Chen, 1976, The entity-relationship model: towards a unified view of data, ACM Transactions on Database Systems 1:1 pp 9-36.

� C.J. Date, 1986, An Introduction to Database Systems, Volume 1, 4th edition, Addison-Wesley.

� James Martin, 1989, Information Engineering, Prentice-Hall

� Kim B Bruce, 1992, Introduction to data modelling – identifying data objects and relationships.

� The concept of at one time is very useful for clarifying relationships, as long as the time-span is recognised and agreed beforehand. For real-time systems, it could range from fractions of a second to a few seconds. For most IT systems, the time-span varies from a few hours, to days, weeks and months. The time-span for retail systems is usually one day or week, the period between stock checks. For banks, their cheque-clearing and cash-teller systems periods are measured in hours, the branch system period is a trading day, and the customer-account/mortgage lending systems periods are a calendar month. For FE colleges, their academic and time tabling systems periods are the term or semester.

� They were also known as link entities and, in the first hand-built relational databases of the late 1970’s, their physical realisation was given the generic name link-list table.

� The original notation used by Peter Chen is widely imitated in academic texts and journals, but is rarely seen within CASE tools or professional publications. Amongst the most common notations used are Bachman, Crow’s feet and Idefix. What they all have in common is the rectangular box representing an Entity, and a straight-line representing the relationship between Entities.

